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Magnetocaloric Effect Simulation in La0.8Na0.2MnO3-Δ 

Nanopowders 

Nawel Khedmi1, Nadia Zaidi2 and Mohamed Hsini3# 

The critical behavior of La0.8Na0.2MnO3-Δ nanopowders at the paramagnetic to ferromagnetic phase 
transition is studied. The optimized critical exponents, through an iterative program based on Kouvel–
Fisher method, were found to be as: 𝜸 = 𝟏. 𝟎𝟓; 𝜷 = 𝟎. 𝟒𝟓. These obtained critical exponents does not match 
with the conventional universality classes. In addition, these 𝜸 and 𝜷 values are close the ones predicted by 
the mean-filed theory (𝜸 = 𝟏 and 𝜷 = 𝟎. 𝟓). It has been approved that the estimated critical temperature and 
the critical exponents are unambiguous and intrinsic to the La0.8Na0.2MnO3-Δ nanopowders. Based on the 
combination of the Landau model and the Arrott–Noakes equation, the isothermal magnetization curves and 
the magnetocaloric effect have been successfully simulated. 

 

1. Introduction

The critical behavior and the order of a phase 
transition analyzes are crucial to classify the 
dynamic behavior of magnetic materials with a lot 
of applications such as magnetic cooling [1], 
spintronics devices [2], magnetic sensors [3], 
magnetic storage devices [4, 5], etc. Especially, the 
magnetocaloric effect (MCE), needful for the 
magnetic refrigeration (MR) technology, manifests 
through a reversible temperature change in a 
material when it is exposed to change of magnetic 
field  [6]. For the MR cycle, there are magnetic 
Stirling cycle, Brayton cycle, the Active Magnetic 
Regenerator Refrigeration (AMRR) cycle, Ericsson 
cycle, and Carnot cycle [7]. The AMRR could reach 
around 30-60% of Carnot efficiency with more 
energy-efficient and profitably. In addition, it would 
provide compactness, noiseless environment, and 
soothing environmental impact due to the solid 
state magnetic instead of the fluid refrigerant. The 
magnetic transition order has a fundamental part in 
practical applications of these magnetic systems. 
Two general properties are accompanied in this 
transition: the phase transition order and the 
universal class. Near the paramagnetic (PM) 
ferromagnetic (FM) phase transition, several 
measurable quantities could be characterized with 
critical temperature and exponents [8, 9]. According 
to the obtained exponents values, the magnetic 

alloys could be classified and arranged [10, 11]. 
Moreover, the usefulness of theoretical methods 
describing the MCE is substantial not only to fit the 
behavior of the available experimental data, but also 
to predict new associated properties under external 
or internal factors. For this goal, various recent 
works focus on theoretical study of the MCE [12-
14]. These theoretical methodologies such as the 
Mean-Field Theory (MFT) [15, 16], Effective-Field 
Theory (EFT) [17, 18] and Monte Carlo simulation 
(MC) [19] set a deep description of the 
thermomagnetic properties of the magnetic 
systems.  

Nowadays, the requirements shift from classical 
ceramic samples to nano-sized materials which can 
be used in biomedical application or in MCE [20]. 
Obviously, the particles behave as a single-domain 
state when the sizes of magnetic particles are 
reduced. This change gives rise to modify physical 
properties of the particles as compared to those of 
bulk material. Moreover, the nanoparticles physical 
properties are commanded by the surface disorder 
and the finite-size effects. It was reported that 
reducing size in manganites may affect their 
magnetic properties e.g., changing the PM to the FM 
transition from first to second order [21], reducing 
the Curie Temperature (𝑇𝐶 ) [22, 23], favorizing the 
formation of an FM state at low temperature with 
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suppressing the antiferromagnetic state [24], etc. It 
is generally common that compounds comprising 
lanthanides are feasible magnetocaloric materials 
[25]. Recently, Liedienov et al. [26] have reported 
the superparamagnetic contribution and the spin-
dependent magnetism to the MCE of the 
La0.8Na0.2MnO3-nanopowders (LNMO).  The XRD 
patterns of the LNMO refined using the Rietveld 
method showed that the LNMO is well described in 
the framework of the rhombohedral space group 
𝑅3̅𝐶.  The dependence of magnetization on 
temperature, 𝑀(𝑇), indicated that LNMO exhibited 
a FM-PM at 𝑇𝐶 = 327 𝐾. The critical behavior of 
LNMO was reported in [26] using relative slopes 
(𝑅𝑆) method known as 𝑅𝑆 =  𝑆(𝑇)/𝑆(𝑇𝐶), where 𝑆 
is the slope of the model curve under higher 
magnetic region. The closest model, supposing the 
accurate one to describe the behavior of LNMO, is 
reported to be the mean field model (MFM) with β = 
0.5 and γ = 1, but a deviation was found between the 
values of the critical exponent 𝛽 from the MFM value 
(0.5) and the obtained one (0.334) using the 
Kouvel–Fisher method [27]. In fact, this discrepancy 
returns to the limitation of the 𝑅𝑆 method to select 
the adequate model for a random magnetic system 
since it presents only four classical models: the 
MFM, the Tricritical Mean Field Model, the 3D-
Heisenberg and the 3D-Ising Models. From the 
theoretical considerations, multiple models have 
been used for understanding different properties of 
materials. Some models open the access to simulate 
the isotherms 𝑀(𝐻, 𝑇) and the magnetic entropy 
change −∆𝑆𝑀(𝐻, 𝑇) curves. The numerical 
resolution for the equation of the states lead to 
generate data. The benefit of this process could be 

useful to replace experimental measurements that 
are almost expensive and time-consuming.  In this 
work, we studied the critical behavior of LNMO. 
Using a robust iterative technique [28], the critical 
exponents 𝛽 and 𝛾 are set and sorted out again from 
the inverse of the magnetic susceptibility as a 
function of temperature 𝜒0

−1(𝑇) and the from 
spontaneous magnetization as a function of 
temperature 𝑀𝑆(𝑇). Subsequently, an efficient 
scaling based on the combination of the Gibbs free 
energy with the Landau model was integrated. 
Based on this vigorous Landau model, isothermal 
magnetization 𝑀(𝐻, 𝑇) and magnetic entropy 
change −∆𝑆𝑀  curves were successfully simulated in 
a wide validity temperature range. Consequently, 
the presented results candidate that the 
combination between the critical behavior and the 
Landau theory could be a promising theoretical 
method to simulate the MCE. 

2. Results and Discussion 

2.1. Arrott–Noakes Equation 

Near a second order PM-FM phase transition, the 
Arrott–Noakes equation (ANE) of state, for a 
magnetic material with the constants 𝑎 and 𝑏, is 
given as [29]: 

(
𝐻

𝑀
)

1

𝛾
= 𝑎(𝑇 − 𝑇𝐶) + 𝑏𝑀

1

𝛽                                               (1) 

 

  

Figure 1. (a) Modified Arrot plots (MAPs), M
1

β vs. (
H

M
)

1

γ
. (b) Fitting MS(T) and χ0

−1(T), with Eq. (2) and Eq. 

(3).
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Table 1. Critical exponents 𝛽 and 𝛾 for the sample 
studied in this work, and values arising from known 
theoretical models. 

Material or Model β γ 

La0.8Na0.2MnO3-Δ 

nanopowders 
0.45 1.05 

Mean Field Model 0.5 1 

3D Heisenberg 

Model 
0.365 1.336 

3D Ising Model 0.325 1.24 

 
Knowing that the reduced temperature is ε =

T−TC

T
, the scaling relations of Eq. (1) provide MS and 

𝜒0
−1 [30]: 

MS = M0(−ε)β ; T < TC,                                                  (2) 

χ0
−1 = h0εγ ; T > TC,                                                       (3) 

Where M0 and h0 are critical amplitudes. In fact, 
the validity of the ANE is available only in a very 
narrow region: |ε| < 0.1 [31]. The experimental 
isothermal data M(H, T), useful in this work, were 
taken from ref. [26]. 

The suitable 𝛽 and 𝛾 values are optimized if they 
lead to obtain parallel straight lines for the modified 

Arrot plots (MAPs), M
1

β vs. (
H

M
)

1

γ
. Also, the critical 

isotherm (at T =  TC) must pass through the origin. 
The choice of 𝛾 and β values is not realistic because 
injecting two free random parameters in Eq. (1) 
leads to systematic errors in exponent values. To get 
a physical fit, an iteration program based on 
Kouvel–Fisher method [28] has been implemented 
to select the proper 𝛾 and 𝛽 values. Taking  𝛾 and 𝛽 
arbitrarily, the implemented program will 
continuously modify their values until the two 
requirements above are achieved. The convergence 
in adjusting is reached with 𝛾 = 1.05 and 𝛽 = 0.45 
for LNMO. Using these last values, a nice plot 
showing parallel straight lines in Fig. 1(a) was 
generated.  It is significant to mention that during 
critical scaling in Fig. (1a) only the higher fields 
region (H >  1 T) are considered because of the 
rearrangement of magnetic domains at the lower 
fields and the demagnetization factor that affect the 
MAPs with deviation from linearity [32].Linear fits 

of the MAP give MS
1/β

 and (χ0
−1)1/γ. The obtained 

MS(T) and χ0
−1(T) for LNMO are represented in Fig. 

1(b). Fitting MS(T) using Eq. (2) gives: β =
0.45 and TC = 326.98 K. However, fitting χ0

−1(T) 
using Eq. (3) gives: γ = 1.05 and TC = 327.01 K. The 
obtained critical exponents for the La0.8Na0.2MnO3-Δ   
nanopowders are compared with the ones arising 
from known theoretical models (see Table 1). 

As shown in Table 1, the obtained 𝛽 and 𝛾 of 
La0.8Na0.2MnO3-Δ nanopowders does not match with 
universal classes. But these γ and β values are close 
to the ones predicted by the mean-filed theory (γ =
1 and β = 0.5). This critical behavior analysis 
confirms that the obtained critical values are 
unambiguous and intrinsic to the La0.8Na0.2MnO3-Δ 
nanopowders. 

2.2 Critical exponents and Landau models 

The Gibbs free energy for a random FM system 
with a second order transition can be expressed 
within the Landau model as [32]: 

G(T, M) = G0 + [
1

1

γ
+1

A(T)M
1

γ
+1

+

1
1

β
+

1

γ
+1

B(T)M
1

β
+

1

γ
+1

− MH
1

γ] 𝐻
1−

1

𝛾                                  (4) 

where 𝐺0 is the reference energy, A(T) and B(T) are 
parameters depending on temperature and 
containing electron condensation energy and 
magnetoelastic coupling [33]. The minimization of 

the Gibbs free energy, (
𝑑𝐺

𝑑𝑀
)

𝑇
= 0, leads to obtain the 

following equation of the state: 

(
H

M
)

1

γ
= A(T) + B(T)M

1

β                                                 (5) 

However, the magnetic entropy (𝑆𝑀 = −
𝑑𝐺

𝑑𝑇
) 

with eliminating MS values [34] can be expressed as: 

−∆SM = [
1

1

γ
+1

dA(T)

dT
(M

1

γ
+1

− MS

1

γ
+1

) +

1
1

β
+

1

γ
+1

dB(T)

dT
(M

1

β
+

1

γ
+1

− MS

1

β
+

1

γ
+1

) − (M −

MS)H
1

γ] H
1− 

1

γ                                                                       (6) 

With the reliable γ and β values estimated above, 

isotherms (
H

M
)

1

γ
 vs. M

1

β at the hole temperature 

range and under high magnetic fields for the LNMO 
are plotted in Fig. 2. 

 

Figure 2. The linear fits of (
H

M
)

1

γ
 vs. M

1

β. The inset 

presents the corresponding A(T) and B(T) curves. 
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Figure 3. Simulation (with red lines) of (a) isotherms M(H, T)  and (b) −∆SM(T) curves under various H 
values using the Landau model. The corresponding experimental results [26] are shown with symbols.

 

According to Eq. (7), linear fittings of (
H

M
)

1

γ
 vs. M

1

β 

give A(T) and B(T) curves which are shown in the 

inset of Fig. 2. At 𝑇 = 𝑇𝐶 , 𝐴(𝑇𝐶) = 0 ;  
𝜕𝐴

𝜕𝑇
|

𝑇𝐶

≠ 0 ; 

𝐵(𝑇𝐶) ≠ 0 and 
𝜕𝐵

𝜕𝑇
|

𝑇𝐶

= 0. These criteria are similar 

with a second order magnetic transition as reported 
Amaral et al. [35].  

Resolving Eq. (5) with the known A(T) and B(T) 
may generate isothermal M(H, T) curves which are 
represented with red lines in Fig. 3(a). Simulated 
M(H, T) curves correlate with the experimental data 
(symbols).  

The generated M(H, T) and the calculated MS 
with the γ and β values are inserted in Eq. (6) to 
generate −∆SM(T) curves. These −∆SM(T) curves 
(red lines) are displayed in Fig. 3 and compared 
with the corresponding experimental ones 
(symbols) for the LNMO. 

A well correlation between simulated and 
experimental −∆SM(T) curves is set in a large 
temperature range which confirms the promising of 
such theoretical models to simulate the MCE in 
LNMO. 

 

3. Conclusion 

To conclude, the present study reports critical 
behavior across the paramagnetic ferromagnetic 
transition for the La0.8Na0.2MnO3-Δ nanopowders. 
The values of the critical exponents γ and β were 
optimized as to be1.05 and 0.45, respectively. They 
were exploited to analyze the Gibbs free energy 
within the Landau theory. As a result, isothermal 
magnetization and the magnetic entropy change 
curves were successfully simulated from this 
analysis. Based on the renormalization-group study, 
this critical behavior analysis may help to 
understand the exchange interactions, for the 
La0.8Na0.2MnO3-Δ nanopowders.  

Method 

Isothermal magnetization data were analyzed 
using MATLAB software. Resolving the equations of 
the state is achieved using methods based on the 
nonlinear least-squares algorithms. If the system 
may not have a zero, the algorithm still returns a 
point where the residual is small.   
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