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Identification of Distinct and Common Biological Pathways in 

Neurodegenerative Diseases Using Correlation-based Gene 

Expression Analysis  
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Neurodegenerative diseases (NDDs) are a group of diseases with devastating effects on the brain and 
nervous system that are often progressive and incurable. Alzheimer's disease (AD), Parkinson's disease (PD) 
and amyotrophic lateral sclerosis (ALS) are the most common diseases in this group. In this study, we sought 
to identify both common and disease-specific biological signaling pathways in AD, PD and ALS. Differential 
gene expression (DEGs) analyses were performed using microarray and RNA-Seq data from the NCBI GEO 
database, and specific gene co-expression networks were generated for each disease. These networks 
revealed differences in gene expression between diseased and healthy groups. Functional enrichment 
analyses were performed using the KEGG and Reactome databases, and the results showed that common 
biological pathways such as PI3K/Akt, calcium signaling, synaptic transmission, and transcriptional 
regulation were prominent. In addition, distinct biological pathways were also identified for each disease. 
These results contribute to a better understanding of the molecular structure of NDDs and provide potential 
biomarkers and therapeutic targets. 

 

1. Introduction

Neurodegeneration is an irreversible process in 
which neurons become structurally or functionally 
damaged [1]. Neurodegeneration can occur due to 
the effects of genetic factors and aging, as well as 
damage at birth. Neurodegenerative diseases 
(NDDs) occur as a result of the progression of 
neurodegeneration, and NDDs have challenges in 
the understanding of molecular pathogenesis, 
diagnosis and treatment [2]. 

Although NDDs present with various clinical 
symptoms due to the loss of specific neurons and 
synapses in different regions of the brain, studies 
show that there are common mechanisms at the 
molecular level and cell death pathways in the 
pathogenesis of these diseases. In general, 
inflammatory processes, mitochondrial 
dysfunctions, damage to reactive oxygen species [3] 
and pathogenic proteins are common problems in 
NDDs [4]. In addition, environmental factors (i.e: 
pesticides air pollution), and diet increase the risk 
of age-related neurodegeneration [5]. 

In addition, regional aggregation of cytosolic or  

nuclear proteins is a common feature in NDDs [5], 
[6]. This feature includes accumulation of beta-
amyloid (Aβ) plaques in Alzheimer's disease (AD) 
[7], accumulation of α-synuclein aggregates and 
other synucleinopathies in Parkinson's disease (PD) 
[8], and TAR DNA-binding protein (TDP)-43 
residues in ALS [9] and frontotemporal dementia. In 
addition, the migration of these aggregates to 
different parts of the brain is a common feature in 
NDDs [6]. 

NDDs, AD, PD, prion disease, motor neuron 
diseases, Huntington's disease, spinal muscular 
atrophy (SMA), Progressive supranuclear palsy 
(PSP), and Lewy body dementia (DLB) involve 
various pathological patterns and clinical 
presentations [6]. AD is the first and most prevalent 
NDDs with increasing dementia, and PD follows AD 
[10]. In studies on NDDs, it has been determined 
that protein folding and quality control, 
mitochondrial damage and homeostasis, autophagy 
and lysosomal dysfunction, protein seeding and 
propagation, stress granules, and synaptic toxicity  
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pathways are affected [11], [12]. 
Network medicine provides an effective 

framework for elucidating cellular signaling, 
regulatory pathways, and the associated structural 
and functional architecture. Singh et al. (2018) 
reported that the biological causes of pathological 
conditions can be uncovered through network-
based analytical approaches [13]. A subfield of 
network medicine, the differential network 
approach, focuses on the dynamic responses of 
systems affected by perturbations. In this context, 
gene correlation analyses offer an integrated 
perspective on the complex interactions among 
molecular determinants of disease phenotypes. This 
approach not only facilitates the unbiased 
identification and mapping of novel disease-related 
genes and modules but also supports the 
development of effective therapeutic strategies 
involving rational polypharmacy[14]. 

The overlapping phenotypic characteristics 
observed in various neurodegenerative diseases 
(NDDs) suggest the existence of shared pathogenic 
mechanisms. A hallmark feature of many NDDs is 
their presentation as proteinopathies, marked by 
the misfolding, accumulation, and aggregation of 
disease-specific proteins. For instance, β-amyloid 
plaques in AD, α-synuclein inclusions in PD, and 
TDP-43 aggregates in ALS exemplify this 
pathological convergence. Supporting this, Arneson 
et al. reported that although no common 
differentially expressed genes (DEGs) were 
identified across AD, PD, and ALS at the genomic 
level, transcriptomic data revealed the involvement 
of shared molecular pathways among Huntington's 
disease, AD, PD, and ALS [11]. In the present study, 
we aimed to identify DEGs across AD, PD, and ALS, 
construct differential co-expression networks and 
gene clusters, and compare the biological pathways 
to uncover both common and disease-specific 
molecular signatures among these disorders. 

 

2. Results and Discussion 

2.1. Differential Gene Expression in NDD 

As a result of the transcriptomic analyses 
performed on eight different AD datasets, the 
number of DEGs identified ranged from 688 to 
4,390 depending on the dataset. Among these, the 
GSE5281 dataset exhibited the highest number of 
DEGs, comprising a total of 4,390 DEGs, including 
3,145 up-regulated transcripts. In contrast, the 
most prominent down-regulation was observed in 
the GSE193438 dataset, in which the expression 
levels of 2,113 genes were significantly decreased 
(Figures 1(a-d)). 

PD gene expression raw data were grouped into 
postmortem brain tissue, frontal cortex and 

substantia nigra and analyzed. There were 93 
common DEGs in brain tissue, 48 DEGs in frontal 
cortex and 35 DEGs in substantia nigra. The 
distribution of DEGs, based on their regulatory 
signatures, with upregulated genes 334 to 3892 and 
downregulated genes 37 to 1233. The majority 
(69%) of DEGs were found to be downregulated 
(Figures 1(e-h)). 

ALS-related gene expression raw data were 
stratified into two distinct tissue groups: muscle 
and motor neurons. Differential expression analysis 
revealed a total of 121 common DEGs in muscle 
tissue samples and 274 common DEGs in motor 
neuron samples. Among the DEGs identified in 
muscle tissues, 63.93% were found to be 
upregulated. In motor neuron tissues, a higher 
proportion—84%—of DEGs exhibited 
upregulation. These findings are illustrated in Figs. 
1(i-j). 
 
2.2. Differential Co-expression Analysis 

Following the identification of common DEGs, 
we calculated SCCs of binary common DEGs to 
identify crucial gene pairs exhibiting co-expression. 
Within the constructed co-expressed network for 
the AD state, a total of 15 co-expressed clusters 
were initially recognized. However, our criteria for 
detecting gene clusters, and co-expressed clusters 
(requiring nodes ≥10 and network density > 40%) 
led to the identification of only three clusters 
meeting our specified parameters for AD state. 

In the differential co-expression analysis of the 
common DEGs of brain tissues in AD, two clusters 
were identified, and only one was significant, named 
Brain Gene Cluster consisting of 10 genes (Figure 
2(a)). This cluster exhibited an edge count of 42 and 
a network density of 93%. Similarly, analysis of the 
common DEGS of hippocampus tissue in AD 
revealed seven clusters, among which one 
statistically significant cluster (Cluster 5) named 
Hippocampus Gene Cluster comprised 10 genes, 
with an edge count of 20 and a network density of 
44% (Figure 2(b)). Lastly, examination of the 
common DEGs of the parietal lobe uncovered five 
clusters, with one statistically significant cluster 
(Cluster 2) named Parietal Gene Cluster consisting 
of 11 genes. This cluster exhibited an edge count of 
44, a network density of 80% (Figure 2(c)). 
However, no clusters were observed in the analysis 
of the common DEGs in frontal cortex tissues.  

In our study on PD, we found no clusters in brain 
and frontal cortex tissues. However, we identified 
six significant clusters in the substantia nigra, with 
Cluster 1 and Cluster 2 showing particularly strong 
statistical relevance. Cluster 1 is a highly clustered 
gene consisting of 159 nodes with 5380 edges and 
43% network density (Figure 2(e)). Cluster 2 is 
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Figure 1. The Venn diagram illustrates the overlapping differentially expressed genes (DEGs) across 
various transcriptomic datasets. (a) Brain tissues from Alzheimer's disease (AD) patients, (b) Parietal lobe 
tissue (AD), (c) Hippocampal tissue (AD), (d) Frontal cortex tissue (AD), (e) Whole brain tissue from 
Parkinson’s disease (PD) patients, (f) Substantia nigra tissue (PD), (g) Substantia nigra tissue from an 
independent PD dataset, (h) Frontal cortex tissue (PD), (i) Muscle tissues of amyotrophic lateral sclerosis 
(ALS), (j) Motor neurons of ALS. 

clustered with 53 nodes and 1215 edges with 88% 
network density (Figure 2(d)). 

For motor neuron cells in ALS, we identified four 
clusters, but only one met our threshold criteria. 
Cluster 1 consists of 20 nodes, 130 edges, and has a 
network density of 68% (Figure 2(f)). For muscle 
cells, we identified five clusters, but only Cluster 1 
met our significant cluster criteria. Cluster 1 
consists of 28 nodes, 174 edges, and has a network 
density (Figure 2(g)). 

 
2.3. Overrepresentation Analysis 

Overrepresentation analyses showed that the 
AD gene clusters were significantly associated with 
neuronal and cardiac pathways. Cluster-forming 
genes in AD were obtained by merging all AD-
related cluster genes. For AD gene cluster, the 
transcriptional regulator MECP2 targets 
neurotransmission-related genes such as glutamate 
receptors (GRIA2, GRIN2A, GRIN2B) and opioid 
receptors [15], [16]. MECP2's interaction with tau 
pathology and its potential to repress Alzheimer's 
risk genes suggest a complex role in the disease 
[15]. The SLC transporter family, particularly SLC6, 
plays critical roles in neurotransmitter uptake and 
termination of synaptic signaling [17]. The presence 
of endocytosis and transporter-mediated pathways 

is significant given the well-established role of 
endocytic dysfunction in amyloid precursor protein 
(APP) processing and tau pathology. Similarly, 
vitamin and cofactor metabolism pathways may 
reflect altered cellular bioenergetics and redox state 
in AD. (Figure 3) [18]. 
Cluster-forming genes in PD were obtained by 
merging all PD-related cluster genes. For PD, our 
findings support the information in the literature 
the MAPK and PI3K/Akt signaling pathways play 
central roles in cell growth, survival and stress 
responses. Overactivation of the MAPK cascade can 
trigger apoptosis, while underactivation of the 
PI3K/Akt pathway can weaken cellular defense 
mechanisms [19], [20]. Disruption of ECM 
(extracellular matrix) proteoglycans and loss of 
function in focal adhesions can lead to impaired cell-
cell interactions and neuronal communication[21], 
[22]. Furthermore, dysfunction of transcription 
factors such as RUNX2 and AP-2 may accelerate the 
degenerative process by negatively affecting 
cellular differentiation and repair [23]. 
Impairments in arachidonic acid metabolism may 
increase neuronal damage through activation of 
inflammatory processes (Figure 4) [24]. 

Overrepresentation analyses showed that the 
cluster forming genes in ALS were significantly 
associated with signaling pathways. Cluster-forming 
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Figure 2. Differentially co-expressed clusters obtained from co-expression network analysis. (a) 
Differentially co-expressed genes within the Brain Gene Cluster in Alzheimer's disease. (b) Differentially co-
expressed genes within the Parietal Gene Cluster in Alzheimer's disease. (c) Differentially co-expressed 
genes within the Hippocampus Gene Cluster in Alzheimer's disease. (d) Cluster 1 in Parkinson's disease. (e) 
Cluster 2 in Parkinson's disease. (f) Motor Neuron Cluster in Amyotrophic Lateral Sclerosis (ALS). (g) 
Muscle Cluster in ALS. 
  

 

Figure 1. Overrepresentation analysis of cluster forming genes in Parkinson's Disease. 

genes in ALS were obtained by merging all ALS-
related cluster genes. Receptor tyrosine kinase-
based pathways such as RET and SCF-KIT are 
prominent in the pathogenesis of ALS [25]. IGF1R 
and neurotrophin signaling pathways are critical for 
motor neuron survival and regeneration [26]. 

Dysfunction of mTOR and PI3K/Akt pathways may 
accelerate neuronal degeneration by increasing 
susceptibility to oxidative stress and mitochondrial 
dysfunction. Impairment of insulin signaling 
pathways may explain the metabolic dysfunctions 
and energy imbalance in ALS. Overactivation of p53 
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signaling may trigger apoptosis in motor neurons. 
Furthermore, disruption of glutamatergic and 
GABAergic synapses may cause motor neuron 
hyperactivity and communication defects. 
Imbalances in the calcium signaling pathway also 
play a critical role in cellular toxicity. (Figure 5). 

It is noteworthy that the PI3K/Akt pathway is 
commonly impaired in ALS [27] and PD [28] This 
pathway has a central role in energy metabolism, 
anti-apoptotic signaling and cellular defense 
mechanisms. The Constitutive Signaling by 
Aberrant PI3K in Cancer pathway reflects a 
persistent upregulation of PI3K activity, leading to 
abnormal activation of intracellular survival and 
proliferative signals. In contrast, the Negative 
Regulation of the PI3K/AKT Network suggests 
suppression of this axis, potentially depriving 
neurons of critical survival cues. Additionally, the 
PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 
pathway highlights the regulatory functions of PI5P, 
PP2A, and IER3 in modulating the intensity and 
duration of PI3K/AKT signaling. The enrichment of 
these pathways in both ALS and PD suggests that 
dysregulation of the PI3K/AKT axis—either 
through hyperactivation or insufficient 
modulation—may contribute to the pathogenesis of 
neurodegeneration. Accordingly, this signaling 
cascade should be considered a key molecular 
mechanism underlying both diseases. 

The presence of HTLV-1 infection pathways in 
both ALS and PD further supports the involvement 
of immune dysregulation and viral mimicry in 
disease progression. This aligns with prior findings 
on chronic neuroinflammation and altered T-cell 
activity in neurodegenerative conditions. 

Additionally, Growth hormone synthesis, 
secretion and action was commonly enriched in 
both diseases. This implicates impaired GH/IGF-1 
axis signaling, which is essential for neuronal 
growth, synaptic maintenance, and metabolic 
regulation, possibly contributing to progressive 
motor neuron degeneration and dopaminergic 
neuronal loss. Collectively, these shared pathways 
underline convergent mechanisms involving 
disrupted growth factor signaling, inflammatory 
processes, and extracellular matrix alterations, 
offering potential therapeutic targets for both ALS 
and PD.  

Immune responses due to viral infections can 
increase neuronal loss in ALS and PD by triggering 
neuroinflammation, especially through microglial 
activation [29]. The involvement of viruses such as 
HTLV-1 in this process suggests that environmental 
factors are also influential in disease progression. 

Although this study provides valuable insights 
into shared and disease-specific molecular 
mechanisms in neurodegenerative diseases, certain 
limitations should be considered. The use of 
heterogeneous transcriptomic datasets from 
different platforms (RNA-Seq and microarray) 
introduces potential technical variability despite 
normalization efforts. Additionally, differences in 
tissue types, disease stages, and clinical metadata 
may affect the comparability of results. While 
robust statistical approaches were applied, residual 
biases cannot be fully excluded. Future studies 
integrating multi-omics data and harmonized 
clinical information will be essential to validate and 
extend these findings. 

 

 

Figure 2. Overrepresentation analysis of cluster forming genes in ALS. 
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3. Conclusion 

In conclusion, the pathway-based comparative 
analysis of ALS, PD, and AD highlights both 
overlapping and disease-specific molecular 
mechanisms. The recurrent involvement of the 
PI3K/AKT signaling cascade in ALS and PD suggests 
a shared axis of dysregulated cell survival and 
metabolic signaling, which may not be as 
prominently altered in AD. Additionally, the 
enrichment of transcriptional, ECM-related, and 
receptor tyrosine kinase pathways further 
distinguishes PD and ALS, while MECP2-related 
transcription and vitamin metabolism pathways 
emerge as key features of AD. These insights not 
only enhance our understanding of 
neurodegenerative disease heterogeneity but also 
underscore the therapeutic relevance of targeting 
common signaling hubs, particularly the PI3K/AKT 
pathway, in ALS and PD. 

Method 

Selection of gene expression datasets 

Transcriptome raw datasets for AD, PD, and ALS 
were sourced from the National Center for 
Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO) [47]. The datasets were selected 
according to the following criteria: (1) inclusion of 
both healthy control and disease groups; (2) 
derived from Homo sapiens; (3) generated using 
either RNA-Seq or microarray platforms; and (4) 
relevance to tissues primarily affected in each 
disease. Accordingly, brain tissues were prioritized 
for AD and PD to capture neuronal alterations, while 
motor neuron and muscle tissues were selected for 
ALS to reflect its characteristic degeneration sites 
(refer to Table 1). 

Differential Gene Expression Analysis  

An integrative and methodologically robust 
approach was implemented to detect differentially 
expressed genes (DEGs) in both microarray and 
RNA-seq datasets. For microarray data, raw 
expression values were normalized using the 
Robust Multi-Array Average (RMA) algorithm [48], 
as implemented in the affy package (Gautier et al., 
2004)  within the R/Bioconductor framework [49]  
DEG analysis was subsequently carried out using 
the Linear Models for Microarray Data 
(limma)package [50] , which is well-established for 
its robustness and precision in analyzing high-
throughput expression data. For RNA-seq data, the 
DESeq2 package [51] was utilized to handle raw 
count data and perform normalization and 

differential expression analysis, taking advantage of 
its model-based approach for dispersion estimation 
and hypothesis testing. To ensure statistical rigor 
and minimize false positives, the Benjamini-
Hochberg procedure was applied to control the false 
discovery rate (FDR), with adjusted p-values below 
0.05 considered significant. Additional filtering 
criteria based on fold change were also 
implemented, with genes exhibiting a fold change 
>1.5 considered upregulated, and those with fold 
change <0.67 deemed downregulated. Finally, DEGs 
identified from both microarray and RNA-seq 
analyses were compared to pinpoint consistently 
altered genes across platforms. Overlapping DEGs 
representing shared molecular signatures were 
retained for downstream functional and integrative 
analyses. 

 
Co-Expression Network Analysis 

Co-expression network analysis, a widely 
recognized approach for investigating gene-gene 
associations [14], was applied to common DEGs 
derived from RNA-seq and microarray data, 
conserved across disease and control cohorts, to 
assess pairwise transcriptional relationships. Prior 
to analysis, DEGs expression values were 
standardized via z-score transformation to 
minimize inter-sample variability. Normality 
assumptions guided the selection of correlation 
metrics: Pearson’s correlation coefficient (PCC) was 
employed for normally distributed data, whereas 
Spearman’s rank correlation coefficient (SCC) was 
utilized for nonparametric distributions. 
Statistically significant correlations were defined by 
a Benjamini-Hochberg adjusted p-value <0.05. Gene 
pairs meeting this threshold were incorporated into 
condition-specific co-expression networks, which 
delineated interaction patterns in both diseased and 
healthy states. Resultant networks were rendered 
using Cytoscape (v3.10.2) [52] to facilitate 
topological and functional interpretation of gene 
interaction dynamics.  

Identification of Differential Co-Expression Network 
Analysis and Clusters  

To assess statistically significant co-expression 
patterns among common DEGs, a critical threshold 
(Pcritic) was computed based on pairwise SCCs. The 
threshold was defined as: Equation 1 

p_critic =mean SCC+1.96*stdof SCC              (1) 

To focus on biologically meaningful gene-gene 
interactions, a threshold parameter ε\varepsilonε 
was introduced to filter out weak correlations and  
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Table 1. Transcriptome datasets used in the study. 

Disease 
name 

Data type Dataset ID Ref. Cell/ Tissue type 
Number of 
Diseased 
samples 

Number of 
Control 
samples 

AD 

Microarray 
GSE110226 [30] 

Whole Brain Tissue 39 38 GSE36980 [31] 
GSE39420 [32] 

Microarray 
GSE36980 [31] 

Frontal brain tissue 
part 

59 77 GSE5281 [33] 
GSE48350 [34] 

RNASeq 
GSE193438 [35] Hippocampus brain 

tissue part 
8 13 

GSE184942 [36] 
Microarray GSE16759 [37] 

Parietal lobe of brain 8 8 
RNASeq GSE193438 [35] 

PD 

RNASeq 
GSE68719 [38] 

Whole brain tissue 25 27 GSE169755 [39] 
GSE106608  

RNASeq 
GSE216281 [40]  Frontal brain tissue 

part  
30 35 

GSE68719 [38] 

Microarray 
GSE7621 [41] 

Substantia Nigra 26 17 
GSE20141 [42] 

Microarray 
GSE20186  

Substantia nigra 40 31 GSE7621  
GSE20141 [44] 

ALS 
RNASeq 

GSE26276 [43] 
Muscle tissues 10 10 

GSE41414 [44] 
RNASeq GSE76220 [45] 

Motor neurons 
16 14 

Microarray GSE19332 [46] 3 7 

 

retain only those gene pairs exhibiting substantial 
differences in expression patterns between disease 
and healthy conditions. Specifically, gene pairs were 
selected based on the condition: Equation 2 

Ɛ=|SCCd-SCCh|>0.5                (2) 

where SCCd and SCCh state the SCCs) in the disease 
and healthy states, respectively. A threshold of 0.5 
was employed for 𝜀, ensuring that only gene pairs 
with significant alterations in co-expression 
patterns between conditions were considered. This 
filtering criterion enabled the construction of more 
robust and biologically relevant co-expression 
networks, facilitating the identification of critical 
gene interactions and potential regulatory 
mechanisms implicated in disease pathogenesis. 

Functional enrichment analysis of genes 
associated with cluster formation 

Overrepresentation analysis of genes associated 
with cluster formation was performed using 
ConsensusPathDB [53] to systematically identify 
overrepresented biological pathways. Pathway 

annotations were derived from two curated 
repositories: the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) [54] and Reactome [55]. Statistical 
significance was defined as an FDR-adjusted p-value 
<0.05, computed via the Benjamini-Hochberg 
method to mitigate false discovery risks. To ensure 
robustness and breadth in pathway coverage, 
analyses were conducted independently for both 
KEGG and Reactome databases, enabling cross-
validation of enriched biological mechanisms 
associated with disease-specific gene dysregulation. 
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