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Effect	of	Oxygen	Percentage	on	the	Energy	Band	Gap	of	Ga2O3	
Thin	Films	Deposited	by	RF	Magnetron	Sputtering	Method			
Hicret	Hopoğlu1,	Hafize	Seda	Aydınoğlu2,	Ebru	Şenadım	Tüzemen1,3#	

In	this	study,	Ga2O3	films	were	deposited	on	a	sapphire	substrate	using	the	Radio	Frequency	(RF)	magnetron	
sputtering	technique.	The	films	were	produced	at	100	W	power	and	at	different	oxygen	percentages	of	0%,	
2%,	and	4%.	Then,	the	films	were	annealed	in	air	at	900°C.	The	transmittance	measurements	of	all	films	
were	performed	and	the	energy	band	gaps	were	calculated.	The	energy	band	gap	between	before	and	after	
annealing	increased	as	the	oxygen	percentage	increased.	Based	on	these	results,	it	was	revealed	that	the	O2	
concentration	plays	a	crucial	role	in	controlling	the	optical	properties	of	Ga2O3,	which	can	greatly	affect	the	
device	performance.	

	
1.	Introduction

After	 the	 development	 and	 application	 of	 pure	
and	 compound	 semiconductors	 from	 the	 XX	
century,	 broadband-gap	materials	 have	 pioneered	
the	 production	 of	 both	 electronic	 and	
optoelectronic	devices.	Current	studies	cover	ultra-
wide	 bandgap	 (UWBG)	 semiconductor	 materials	
with	an	energy	band	gap	exceeding	4	eV.	AlGaN,	AlN,	
diamond	and	β-Ga2O3	semiconductors	belonging	to	
the	 class	 of	 materials	 called	 transparent	
semiconductor	 oxides	 (TSOs)	 are	 among	 the	 few	
UWBG	 materials	 of	 interest	 [1].	 Among	 these	
materials,	 Gallium	 oxide	 (Ga2O3)	 has	 a	wide	 band	
gap	 (~4.48-4.90	 eV	 range)	 [2],	 high	 critical	 field	
strength	 [3],	 high	 thermal	 capacity	 [4],	 high	
breakdown	field	(~8	MV/cm)	[5]	and	high	Johnson	
and	 Baliga's	 figure-of	 merits	 (2844	 and	 3214)	 as	
compared	 to	 Silicon	 (Si)	 [6]	 has	 attracted	 great	
attention	due	to	its	chemical	stability,	low	cost	and	
high	optical	transparency	[7-16]	.	Gallium	oxide	has	
a	 high	 electrical	 conductivity,	 which	 gives	 the	
material	the	advantage	to	outperform	GaN	and	SiC	
in	 terms	of	 low-resistance	electrical	 contacts.	This	
advantage	 is	due	 to	 the	point	defects	 found	 in	 the	
structure	of	Ga2O3	[17-19].	Ga2O3	has	five	different	
phases,	 commonly	 referred	 to	 as	 α,	 β,	 γ,	 δ,	 and	 ε.	
Among	them,	the	α	and	β	phases	are	the	most	stable,	
and	 even	 the	β	phase	 is	 thermally	 and	 chemically	
more	 stable	 than	 any	 other	 phase.	 Therefore,	
studies	 on	 gallium	 oxide	 have	 focused	 on	 the	 β	

phase	[7].	Deep	ultraviolet	light	detectors	[20,	21],	
photodiodes	[22,	23],	transparent	field	effect	tubes	
[24,	25],	drug	carriers	in	the	biomedical	field	due	to	
its	 high	 luminescence	 feature	 [11,26],	 gas	 sensors	
[27],	 thin-film	 solar	 They	 are	 used	 in	many	 fields	
such	 as	 batteries	 [28,29]	 and	 luminescent	
phosphors	 [30,	 31].	 Radio	 frequency	 (RF)	
magnetron	 deposition	 [32-35],	 pulsed	 laser	
deposition	 (PLD)	 [36,37],	molecular	 beam	epitaxy	
(MBE)	 [38,39],	 metal-organic	 chemical	 vapor	
deposition	 (MOCVD)	 [40,	 41],	 atomic	 layer	
deposition	(ALD)	[42,	43],	spray	pyrolysis	[44,	45]	
and	sol-gel	[46]	are	used	to	prepare	Ga2O3	thin	film.	
There	 are	 certain	 differences	 between	 the	
properties	(structure,	morphology	and	optical	band	
gap)	 of	 thin	 films	 prepared	with	 different	 growth	
methods.	 Among	 the	 growth	 methods,	 the	 RF	
magnetron	 sputtering	 technique	 has	 become	
important	in	the	preparation	of	Ga2O3	thin	films	due	
to	 the	high	 film	quality	of	 the	prepared	 thin	 films,	
good	adhesion	to	the	substrate,	low	cost	and	rapid	
film	formation	[31].	

In	this	study,	RF	magnetron	sputtering	method	
was	used	to	grow	Ga2O3	on	sapphire	substrate.	The	
changes	 in	 optical	 properties	 of	 Ga2O3	 thin	 films	
grown	at	different	oxygen	percentages	before	and	
after	 annealing	were	 investigated	 using	 a	 UV-VIS-
NIR	spectrophotometer.	
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2.	Results	and	Discussion	
The	 optical	 band	 gaps	 of	 the	 films	 were	

calculated	using	the	Tauc	formula,	with	the	help	of	
the	 transmittance	 curves	measured	with	 the	 Cary	
5000	 spectrophotometer	 [35].	 First	 of	 all,	 the	
absorption	 coefficient	 (α)	was	 found	 by	 using	 the	
transmittance	values.	

𝛼 = 1
𝑑% ln	(𝑇)																																																	(1)	

where	T	is	the	transmittance	of	the	thin	film	and	
d	is	the	thickness	of	the	film.	

The	 relationship	 between	 the	 absorption	
coefficient	and	the	incident	photon	energy	and	the	
band	gap	of	the	material	is	given	as:	
(𝛼ℎ𝜐) = 𝐵(ℎ𝜐 − 𝐸!)"																																						(2)	

where	B	is	constant,	hν	is	photon	energy	and	n	is	
a	 constant	 equal	 to	 ½	 for	 direct	 bandgap	
semiconductors.	

In	order	 to	determine	 the	optical	properties	of	
Ga2O3	 thin	 films	 produced	 at	 different	 oxygen	
percentages,	 the	 transmittance	 (T%)	 of	 the	 films	
was	measured	in	the	wavelength	range	of	250-400	
nm	at	room	temperature.	In	Fig.1,	our	transmittance	
was	around	83%	when	no	oxygen	was	given	to	the	
system,	 and	 around	 84%	 when	 2%	 oxygen	 was	
given.	When	we	gave	the	oxygen	percentage	as	4%,	
our	transmittance	was	measured	at	around	82.5%.	
In	 other	 words,	 as	 the	 percentage	 of	 oxygen	
increased,	 the	 transmittance	 first	 increased	 and	
then	the	transmittance	decreased.	

	

	
Figure	 1.	 Variation	 of	 the	 transmittance	 of	 Ga2O3	
thin	films	produced	at	different	Oxygen	percentages	
according	to	wavelength.	
	

In	Fig.	2,	 the	variation	of	 (αE)2	 calculated	with	
the	help	of	the	absorption	coefficient	calculated	by	
using	 the	 transmittance	 values	 of	 the	 Ga2O3	 thin	
films	 produced	 by	 giving	 different	 oxygen	

percentages,	 according	 to	 the	 energy	 is	 shown.	
Interference	 fringe	 is	 not	 observed	 in	 Fig.	 2.	 The	
energy	band	gap	was	measured	as	5.48	eV	when	no	
oxygen	was	supplied	to	the	system,	5.52	eV	when	2	
%	oxygen	was	given,	and	5.52	eV	when	4%	oxygen	
was	 given.	 According	 to	 this	 graph,	 as	 the	
percentage	 of	 oxygen	 increased,	 the	 energy	 band	
gap	increased.	
	

Figure	 2.	 Variation	 of	 Ga2O3	 thin	 films	 (αE)2	
according	 to	 energy	 produced	 at	 different	 oxygen	
percentages.	

	
Figure	 3	 shows	 the	 variation	 of	 the	

transmittance	 of	 Ga2O3	 thin	 films	 produced	 at	
different	oxygen	percentages	and	then	annealed	at	
900°C	 for	 60	 minutes	 in	 the	 air.	 In	 figure	 3,	 our	
transmittance	was	 around	 83	%	when	 no	 oxygen	
was	given	to	the	system,	and	around	84	%	when	2	
%	 oxygen	 was	 given.	 When	 we	 give	 the	 oxygen	
percentage	as	4%,	our	transmittance	is	measured	at		
around	 86	 %.	 As	 the	 percentage	 of	 oxygen	
increased,	 the	 transmittance	 first	 decreased	 and	
then	 the	 transmittance	 increased.	 The	 annealing	
process	 provides	 additional	 oxygen,	which	 causes	
oxidation	 of	 the	 Ga2O3	 thin	 films.	 As	 a	 result,	
interference	 fringes	 were	 observed	 in	 the	 films	
grown	after	annealing.	

Figure	 4	 shows	 the	 variation	 of	 (αE)2	 with	
energy,	 which	 is	 found	 with	 the	 help	 of	 the	
absorption	 coefficient	 calculated	 by	 utilizing	 the	
transmittance	values	of	Ga2O3	 thin	 films	produced	
by	 giving	 different	 oxygen	 percentages	 and	
annealed	 at	 900°C	 in	 the	 air	 for	 60	minutes.	 The	
energy	band	gap	was	measured	as	5.37	eV	when	no	
oxygen	was	 supplied	 to	 the	 system,	5.37	eV	when	
2%	oxygen	was	given,	and	5.40	eV	when	4%	oxygen	
was	 given.	 According	 to	 this	 graph,	 as	 the	
percentage	 of	 oxygen	 increased,	 the	 energy	 band	
gap	increased.	
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Figure	 3.	 Variation	 of	 the	 transmittance	 of	 Ga2O3	
thin	films	produced	at	different	oxygen	percentages	
and	annealed	at	900°C	according	to	wavelength.	

	

	
Figure	3.	Variation	of	(αE)2	of	thin	films	produced	
at	 different	 oxygen	 percentages	 and	 annealed	 at	
900°C	with	respect	to	energy	

	
	

3.	Conclusion	
Using	 the	 RF	 magnetron	 sputtering	 method,	

Ga2O3	 thin	 films	 at	 different	 oxygen	 percentages	
were	 successfully	 grown	 on	 a	 sapphire	 substrate.	
The	grown	thin	films	were	annealed	in	air	at	900°C	
for	60	minutes.	The	effect	of	annealing	on	the	optical	
properties	of	Ga2O3	thin	films	produced	at	different	
oxygen	 percentages	 was	 investigated.	 While	 the	
films	 grown	 before	 annealing	 are	 in	 amorphous	
form,	it	is	thought	that	the	structure	shifts	to	crystal	
after	annealing.	The	energy	band	gap	of	 the	Ga2O3	
thin	films	was	found	by	calculating	the	absorption	

coefficient	 using	 the	 transmittance	 curves.	 It	 was	
observed	 that	 the	 transmittance	 changed	 as	 the	
percentage	 of	 oxygen	 increased.	 It	 was	 observed	
that	the	energy	band	gap	increased	within	itself	as	
the	 oxygen	 percentage	 increased	 before	 and	 after	
annealing.	It	was	seen	that	the	energy	band	gap	of	
the	 films	after	annealing	was	 less	 than	 the	energy	
band	gap	of	the	films	before	annealing.	The	reason	
for	 this	 change	 is	 thought	 to	 be	 due	 to	 oxygen	
defects	in	the	Ga2O3	structure.	
	
Method	

In	this	study,	the	NANOVAK	NVTS-400-2TH2SP	
Thermal	and	Sputter	Combined	System	was	used	to	
produce	 the	 films.	 A	 gallium	 oxide	 target	 with	
99.99%	purity	and	0.250-inch	thickness	and	2-inch	
diameter	properties	was	used	to	grow	gallium	oxide	
films	on	the	sapphire	substrate.	First,	the	substrates	
were	placed	in	acetone	filled	in	a	small	glass	beaker.	
The	 surfaces	 were	 cleaned	 in	 acetone	 for	 8-10	
minutes	and	left	to	dry.	The	base	pressure	was	set	
to	7.4	x	10-6	Torr,	the	working	pressure	was	7x10-3	
Torr,	 the	 power	 was	 100	 W	 and	 the	 substrate	
rotation	 was	 10	 rpm.	 Ga2O3	 films	 were	 grown	 at	
room	temperature,	with	a	thickness	of	200	nm	(the	
value	 entered	 in	 the	 thickness	 monitor)	 and	 at	
different	oxygen	percentages	(0%,	2%,	4%).	

After	 growing,	 the	 samples	 were	 placed	 in	 a	
furnace	 and	 annealed	 at	 900	 °C.	 In	 the	 annealing	
process,	the	samples	were	kept	in	an	air	atmosphere	
for	 60	 minutes.	 After	 annealing,	 the	 temperature	
was	 gradually	 lowered	 to	 room	 conditions.	 After	
annealing,	 the	 effect	 of	 annealing	 on	 the	 crystal	
quality	 of	 the	 films	 was	 investigated.	 Optical	
characterization	 of	 the	 samples	 was	 performed	
using	a	dual	beam	UV-Vis–NIR	spectrophotometer	
(Cary	 5000).	 Optical	 transmittance	 spectra	 were	
obtained	 in	 the	wavelength	 range	 of	 250-400	 nm	
using	the	solid	sample	holder	accessory.	
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