Pb Substitution with La Effect on the Magnetic, and Magnetocaloric Properties of La1.995Pb0.005NiMnO6 Double Perovskite System


Abstract views: 4 / PDF downloads: 1

Authors

DOI:

https://doi.org/10.5281/zenodo.15704585

Keywords:

Magnetocaloric effect, Magnetic refrigeration system, Affordable and clean energy, Double perovskite

Abstract

Increasing energy demands and growing environmental concerns, particularly regarding greenhouse gas emissions, make the development of sustainable technological alternatives necessary. Green technologies, such as the magnetocaloric cooling system based on the magnetocaloric effect, are promising solutions to these challenges. Therefore, it has gathered significant attention from scientists and research groups as a strong candidate to replace conventional cooling systems, offering enhanced effectiveness, greener technology, and lower production costs. For these purposes, La1.995Pb0.005NiMnO6 double perovskite was synthesized by the sol-gel route. The crystal structure was characterized by X-ray Diffraction (XRD) at room temperature. Elemental distribution and surface morphology were investigated using Energy-Dispersive X-ray Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), respectively. Another important property is the magnetic behavior of the compound therefore temperature and magnetic field-dependent magnetization (M(T) and M(H)) analysis were investigated. From the investigation of the temperature dependence magnetization, there was a magnetic phase transition that occurred from the ferromagnetic to the paramagnetic phase near 213.34 K. Under 5T magnetic field variation, the maximum magnetic entropy change (-DSM) was determined and it is 0.23 Jkg-1K-1. According to the results, the compound that was investigated can be a candidate for use as a magnetic refrigerant in a low-temperature region. For making a valid magnetic cooling system that operates around room temperature, optimization studies are essential to be conducted.

Author Biography

Arda Kandemir, Çukurova University

Department of Physics, Faculty of Science and Letters, Çukurova University, 01330 Adana, Türkiye

References

Tassou, S.A., Ge, Y., Hadawey, A., and Marriott, D., Energy consumption and conservation in food retailing. Applied Thermal Engineering, 31(2), 147-156, (2011).

Eskandari, M.A., Brahiti, N., Hussain, I., Balli, M., and Fournier, P., Magnetic and magnetocaloric properties of Pr2CuMnO6. Physica B: Condensed Matter, 649, 414397, (2023).

Gschneidner Jr, K.A., Pecharsky, V.K., Pecharsky, A.O., and Zimm, C.B., Recent Developments in Magnetic Refrigeration. Materials Science Forum, 315-317, 69-76, (1999).

Ayaş, A.O., Akyol, M., and Ekicibil, A., Structural and magnetic properties with large reversible magnetocaloric effect in (La 1-x Pr x ) 0.85 Ag 0.15 MnO 3 (0.0 ≤ x ≤ 0.5) compounds. Philosophical Magazine, 96(10), 922-937, (2016).

Gschneidner, K.A. and Pecharsky, V.K., Recent developments in magnetic refrigeration. 209-221, (1996).

Gschneidner, K.A. and Pecharsky, V.K., Magnetocaloric Materials. Annual Review of Materials Science, 30(1), 387-429, (2000).

Phan, M.-H. and Yu, S.-C., Review of the magnetocaloric effect in manganite materials. Journal of Magnetism and Magnetic Materials, 308(2), 325-340, (2007).

Ayaş, A.O., Kılıç Çetin, S., Akyol, M., Akça, G., and Ekicibil, A., Effect of B site partial Ru substitution on structural magnetic and magnetocaloric properties in La0.7Pb0.3Mn1-xRuxO3 (x = 0.0, 0.1 and 0.2) perovskite system. Journal of Molecular Structure, 1200, 127120-127120, (2020).

Ayaş, A.O., Çetin, S.K., Akça, G., Akyol, M., and Ekicibil, A., Magnetic refrigeration: Current progress in magnetocaloric properties of perovskite manganite materials. Materials Today Communications, 35, 105988, (2023).

Kandemir, A., Akça, G., Kılıç Çetin, S., Ayaş, A.O., Akyol, M., and Ekicibil, A., Effects of Ca substitution on magnetic and magnetocaloric properties in PrBa1-xCaxMn2O6 system. Journal of Solid State Chemistry, 324, 124086, (2023).

Gutfleisch, O., Willard, M.A., Brück, E., Chen, C.H., Sankar, S.G., and Liu, J.P., Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. 23(7), 821-842, (2011).

Zhang, Y., Tian, Y., Zhang, Z., Jia, Y., Zhang, B., Jiang, M., Wang, J., and Ren, Z., Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia, 226, 117669, (2022).

Ram, N.R., Prakash, M., Naresh, U., Kumar, N.S., Sarmash, T.S., Subbarao, T., Kumar, R.J., Kumar, G.R., and Naidu, K.C.B., Review on Magnetocaloric Effect and Materials. Journal of Superconductivity and Novel Magnetism, 31(7), 1971-1979, (2018).

Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., and Conde, A., Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 93, 112-232, (2018).

Lyubina, J., Magnetocaloric materials for energy efficient cooling. Journal of Physics D: Applied Physics, 50(5), 53002-53002, (2017).

Pecharsky, V.K. and Gschneidner K. A, Jr., Giant Magnetocaloric Effect in Gd5(Si2Ge2). Physical Review Letters, 78(23), 4494-4497, (1997).

Kim, Y.K. and Cho, Y.W., Magnetic transition of (MnFe)yP1−xAsx prepared by mechanochemical reaction and post-annealing. Journal of Alloys and Compounds, 394(1-2), 19-23, (2005).

Shah, I.A., ul Hassan, N., keremu, A., Riaz, S., Naseem, S., Xu, F., and Ullah, Z., Realization of Magnetostructural Transition and Magnetocaloric Properties of Ni–Mn–Mo–Sn Heusler Alloys. Journal of Superconductivity and Novel Magnetism, 32(3), 659-665, (2018).

Lyubina, J., Schafer, R., Martin, N., Schultz, L., and Gutfleisch, O., Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Adv Mater, 22(33), 3735-3739, (2010).

Barman, A., Kar-Narayan, S., and Mukherjee, D., Caloric Effects in Perovskite Oxides. Advanced Materials Interfaces, 6(15), 1900291-1900291, (2019).

Zhong, W., Au, C.-T., and Du, Y.-W., Review of magnetocaloric effect in perovskite-type oxides. Chinese Physics B, 22(5), 57501-57501, (2013).

Srivastava, S.K., Samantaray, B., Bora, T., and Ravi, S., Magnetic and electrical properties of Mn-substituted (La0.85Ag0.15)CoO3 compounds. Journal of Magnetism and Magnetic Materials, 474, 605-612, (2019).

Srivastava, S.K. and Ravi, S., Magnetic properties of Nd1−xAgxMnO3compounds. Journal of Physics: Condensed Matter, 20(50), (2008).

Srivastava, S.K., Kar, M., Ravi, S., Mishra, P.K., and Babu, P.D., Magnetic properties of electron-doped Y1−xCexMnO3 compounds. Journal of Magnetism and Magnetic Materials, 320(19), 2382-2386, (2008).

Mohamed, Z., Tka, E., Dhahri, J., and Hlil, E.K., Giant magnetic entropy change in manganese perovskite La0.67Sr0.16Ca0.17MnO3 near room temperature. Journal of Alloys and Compounds, 615, 290-297, (2014).

Krishna Murthy, J., Devi Chandrasekhar, K., Mahana, S., Topwal, D., and Venimadhav, A., Giant magnetocaloric effect in Gd2NiMnO6and Gd2CoMnO6ferromagnetic insulators. Journal of Physics D: Applied Physics, 48(35), 355001-355001, (2015).

Moon, J.Y., Kim, M.K., Choi, Y.J., and Lee, N., Giant Anisotropic Magnetocaloric Effect in Double-perovskite Gd2CoMnO6 Single Crystals. Scientific Reports, 7(1), 16099-16099, (2017).

Moon, J.Y., Kim, M.K., Oh, D.G., Kim, J.H., Shin, H.J., Choi, Y.J., and Lee, N., Anisotropic magnetic properties and giant rotating magnetocaloric effect in double-perovskite Tb2CoMnO6. Physical Review B, 98(17), 174424-174424, (2018).

Vinod, K., Sathyanarayana, A.T., Nithya, R., Gangopadhyay, P., and Mani, A., Studies on magnetic and magnetocaloric properties of double perovskite $$hbox {La}_{2}$$$$hbox {NiMnO}_{6}$$system. Indian Journal of Physics, 98(6), 2023-2030, (2024).

Hossain, A., Atique Ullah, A.K.M., Sarathi Guin, P., and Roy, S., An overview of La2NiMnO6 double perovskites: synthesis, structure, properties, and applications. Journal of Sol-Gel Science and Technology, 93(3), 479-494, (2020).

Chen, X., Xu, J., Xu, Y., Luo, F., and Du, Y., Rare earth double perovskites: a fertile soil in the field of perovskite oxides. Inorganic Chemistry Frontiers, 6(9), 2226-2238, (2019).

Luo, X., Sun, Y.P., Wang, B., Zhu, X.B., Song, W.H., Yang, Z.R., and Dai, J.M., The magnetic entropy change in the double perovskite La2NiMnO6 with strong spin–phonon coupling. Solid State Communications, 149(19), 810-813, (2009).

Ho, T.A., Thanh, T.D., Thang, P.D., Lee, J.S., Phan, T.L., and Yu, S.C., Magnetic Properties and Magnetocaloric Effect in Pb-Doped La0.9Dy0.1MnO3 Manganites. IEEE Transactions on Magnetics, 50(6), 1-4, (2014).

Ayaş, A.O., Structural and magnetic properties with reversible magnetocaloric effect in PrSr1–xPbxMn2O6 (0.1 ≤ x ≤ 0.3) double perovskite manganite structures. Philosophical Magazine, 98(30), 2782-2796, (2018).

Rietveld, H., A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71, (1969).

Rodríguez-Carvajal, J., Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1), 55-69, (1993).

Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5), 751-767, (1976).

Soylu Koc, N., Altintas, S.P., Mahamdioua, N., and Terzioglu, C., Cation size mismatch effect in (La1-yREy)1.4Ca1.6Mn2O7 perovskite manganites. Journal of Alloys and Compounds, 797, 471-476, (2019).

Venkataiah, G., Prasad, V., and Venugopal Reddy, P., Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. Journal of Alloys and Compounds, 429(1), 1-9, (2007).

Debye, P. and Scherrer, P., Interference on inordinate orientated particles in roentgen light. Physikalische Zeitschrift, 17, 277-283, (1916).

Debye, P. and Scherrer, P., Interference on inordinate orientated particles in x-ray light. III. Physikalische Zeitschrift, 18, 291-301, (1917).

Tokura, Y., Critical features of colossal magnetoresistive manganites. Reports on Progress in Physics, 69(3), 797-851, (2006).

Koc, R. and Anderson, H.U., Liquid phase sintering of LaCrO3. Journal of the European Ceramic Society, 9(4), 285-292, (1992).

Debnath, J.C., Zeng, R., Kim, J.H., Shamba, P., Chen, D.P., and Dou, S.X., Effect of frozen spin on the magnetocaloric property of La0.7Ca0.3CoO3 polycrystalline and single crystal samples. Journal of Alloys and Compounds, 510(1), 125-133, (2012).

Kılıç Çetin, S., Acet, M., and Ekicibil, A., Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0 ≤ x ≤ 0.3) manganites. Journal of Alloys and Compounds, 727, 1253-1262, (2017).

Taşarkuyu, E., Coşkun, A., Irmak, A.E., Aktürk, S., Ünlü, G., Samancıoğlu, Y., Yücel, A., Sarıkürkçü, C., Aksoy, S., and Acet, M., Effect of high temperature sintering on the structural and the magnetic properties of La1.4Ca1.6Mn2O7. Journal of Alloys and Compounds, 509(9), 3717-3722, (2011).

Yang, J., Song, W.H., Ma, Y.Q., Zhang, R.L., Zhao, B.C., Sheng, Z.G., Zheng, G.H., Dai, J.M., and Sun, Y.P., Structural, magnetic, and transport properties in the Pr-doped manganites La0.9−xPrxTe0.1MnO3 (0⩽x⩽0.9). Physical Review B, 70(14), 144421-144421, (2004).

Rana, D.S., Kuberkar, D.G., and Malik, S.K., Field-induced abrupt change in magnetization of the manganite compounds (LaR)0.45(CaSr)0.55MnO3 (R =Eu and Tb). Physical Review B, 73(6), 064407, (2006).

Bourouina, M., Krichene, A., Chniba Boudjada, N., and Boujelben, W., Structural disorder effect on the structural and magnetic properties of Pr0.4Re0.1Sr0.5−yBayMnO3 manganites (Re = Pr, Sm, Eu, Gd, Dy and Ho). 43(15), 12311-12320, (2017).

Phong, P.T., Manh, D.H., Hoan, L.C., Ngai, T.V., Phuc, N.X., and Lee, I.-J., Particle size effects on La0.7Ca0.3MnO3: Griffiths phase-like behavior and magnetocaloric study. Journal of Alloys and Compounds, 662, 557-565, (2016).

Krivoruchko, V.N., The Griffiths phase and the metal-insulator transition in substituted manganites (Review Article). Low Temperature Physics, 40(7), 586-599, (2014).

Mandal, P.R. and Nath, T.K., Evolution of Griffith phase in hole doped double perovskite La2−xSrxCoMnO6(x= 0.0, 0.5, and 1.0). Materials Research Express, 2(6), (2015).

Mugiraneza, S. and Hallas, A.M., Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Communications Physics, 5(1), 95, (2022).

Phong, P.T., Dang, N.V., Bau, L.V., An, N.M., and Lee, I.-J., Landau mean-field analysis and estimation of the spontaneous magnetization from magnetic entropy change in La0.7Sr0.3MnO3 and La0.7Sr0.3Mn0.95Ti0.05O3. Journal of Alloys and Compounds, 698(C), 451-459, (2017).

Banerjee, B.K., On a generalised approach to first and second order magnetic transitions. Physics Letters, 12(1), 16-17, (1964).

Ayaş, A.O., Sever, İ.B., Kandemir, A., and Ekicibil, A., The Sintering Temperature Effect on Magnetocaloric Effect in La2MnNiO6 Double Perovskite Manganite Material. Adıyaman University Journal of Science, 13(1&2), 28-42, (2023).

Kandemir, A., Ayaş, A.O., and Ekicibil, A. Impact of Pb on structural, magnetic, and magnetocaloric features in La1.99Pb0.01NiMnO6 double perovskite manganite sample. in 5th International Eurasian Conference on Science, Engineering and Technology (EurasianSciEnTech 2024). 2024. Ankara, Türkiye.

Downloads

Published

2025-06-26

How to Cite

Kandemir, A. (2025). Pb Substitution with La Effect on the Magnetic, and Magnetocaloric Properties of La1.995Pb0.005NiMnO6 Double Perovskite System. Journal of NanoScience in Advanced Materials, 4(1), 24–33. https://doi.org/10.5281/zenodo.15704585

Issue

Section

Research Article
Received 2025-04-20
Accepted 2025-06-10
Published 2025-06-26