Effect of Oxygen Percentage on the Energy Band Gap of Ga2O3 Thin Films Deposited by RF Magnetron Sputtering Method


Abstract views: 188 / PDF downloads: 91

Authors

DOI:

https://doi.org/10.5281/zenodo.7464994

Keywords:

Thin films, Ga2O3, Band gap, Magnetron sputtering, Optical properties

Abstract

In this study, Ga2O3 films were deposited on a sapphire substrate using the Radio Frequency (RF) magnetron sputtering technique. The films were produced at 100 W power and at different oxygen percentages of 0%, 2%, and 4%. Then, the films were annealed in air at 900°C. The transmittance measurements of all films were performed and the energy band gaps were calculated. The energy band gap between before and after annealing increased as the oxygen percentage increased. Based on these results, it was revealed that the O2 concentration plays a crucial role in controlling the optical properties of Ga2O3, which can greatly affect the device performance.

References

Optoelectronics”, Semicond. Sci. Technol. 33, 113001 (2018).

W. Li, Y. Peng, C. Wang, X. Zhao, Y. Zhi, H. Yan, L. Li, P. Li, H. Yang, Z. Wu, “Structural, optical and photoluminescence properties of Pr-doped β-Ga2O3 thin films”, J. Alloy. Compd. 697 388 (2017).

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, “3.8-MV/cm Breakdown Strength of MOVPEGrown Sn-Doped $beta $-Ga2O3 MOSFETs”, IEEE Electron Device Lett. 37, 902 (2016).

H.-t Zhou, L.-j Cong, J.-g Ma, M.-z Chen, D.-y Song, H.-b Wang, P. Li, B.-s Li, H.- y Xu, Y.-c Liu, “High-performance high-temperature solar-blind photodetector based on polycrystalline Ga2O3 film”, J. Alloy. Compd. 847,156536 (2020).

X. Yan, I.S. Esqueda, J. Ma, J. Tice, H. Wang, “High breakdown electric field in β-Ga2O3/graphene vertical barristor heterostructure”, Appl. Phys. Lett. 112, 032101 (2018).

R. Saha, S. Sikdar, B.N. Chowdhury, A. Karmakar, S. Chattopadhyay, “Catalyst modified vapor-liquid-solid (VLS) growth of single crystalline β-Gallium Oxide (Ga2O3) thin film on Si-substrate”, Superlattices Microstruct. 136, 106316 (2019).

Y. Yang, X.-Y. Zhang, C. Wang, F.-B. Ren, R.-F. Zhu, C.-H. Hsu, W.-Y. Wu, D.-S. Wuu, P. Gao, Y.-J. Ruan, S.-Y. Lien, W.-Z. Zhu, “Compact Ga2O3 Thin Films Deposited by Plasma Enhanced Atomic Layer Deposition at Low Temperature”, Nanomaterials 12, 1510 (2022).

S. Bhowmick, R. Saha, M. Mishra, A. Sengupta , S. Chattopadhyay , S. Chakrabarti, “Oxygen mediated defect evolution in RF sputtered Ga2O3 thin films on p-Si substrate”, Materials Today Communications 33, 104766, (2022).

M. Chen, B. Zhao, G. Hu, X. Fang, H. Wang, L. Wang, J. Luo, X. Han, X. Wang, C. Pan, Z.L. Wang, “Piezo-Phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire”, Adv. Funct. Mater. 28 (14) 1706379 (2018).

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, “Solar-blind avalanche photodetector based on single ZnO-Ga2O3 core-shell microwire”, Nano Lett. 15 (6) 3988, (2015).

B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, X. Fang, “An ultrahigh responsivity (9.7 mA W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures”, Adv. Funct. Mater. 27 (17) 1700264, (2017).

H. Wang, H. Chen, L.i. Li, Y. Wang, L. Su, W. Bian, B. Li, X. Fang, “High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on PEDOT: PSS/β-Ga2O3 organic/inorganic p-n junction”, J. Phys. Chem. Lett. 10 (21) 6850, (2019).

S. Oh, C.-K. Kim, J. Kim, “High responsivity β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with ultraviolet transparent graphene electrodes”, ACS Photonics 5 (3) 1123 (2018).

L. Zhang, X. Xiu, Y. Li, Y. Zhu, X. Hua, Z. Xie, T. Tao, B. Liu, P. Chen, R. Zhang, Y. Zheng, “Solar-blind ultraviolet photodetector based on vertically aligned singlecrystalline β-Ga2O3 nanowire arrays”, Nanophotonics 9 (15) 4497 (2020).

K. Arora, N. Goel, M. Kumar, M. Kumar, “Ultrahigh performance of self-powered β-Ga2O3 thin film solar-blind photodetector grown on cost-effective Si substrate using high-temperature seed layer”, ACS Photonics 5 (6) 2391 (2018).

K. Gu, Z. Zhang , K. Tang, J. Huang, M. Liao, L. Wang, “Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors”, Applied Surface Science 605, 154606 (2022).

A. J. Rogers, M. G. Lagally, R. G. Nuzzo, “Synthesis, assembly and applications of semiconductor nanomembranes”, Nature 477, 45 (2011).

C. Cao, Z. Chen, , X. An, H. Zhu, “Growth and Field Emission Properties of Cactus-like Gallium Oxide Nanostructures”, J. Phys. Chem. C 112, 95 (2007).

N. S. Jamwal, A. Kiani, “Gallium Oxide Nanostructures: A Review of Synthesis, Properties and Applications”, Nanomaterials 12, 2061 (2022).

M. I. Pintor-Monroy, B. L. Murillo-Borjas, M. A. Quevedo-Lopez, “Nanocrystalline and Polycrystalline β-Ga2O3 Thin Films for Deep Ultraviolet Detectors”, ACS Appl. Electron. Mater. 2 , 3358 (2020).

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, S. Fujita, “Vertical Solar-Blind Deep-Ultraviolet Schottky Photodetectors Based on β-Ga2O3 Substrates”, Appl. Phys. Express 1, 011202 (2008).

S. Nakagomi, T. Sakai, K. Kikuchi, Y. Kokubun, “β-Ga2O3/p-Type 4H-SiC Heterojunction Diodes and Applications to Deep-UV Photodiodes”, Phys. Status Solidi A 216, 1700796 (2019).

A. Atilgan, A. Yildiz, U. Harmanci, M. T. Gulluoglu, K. Salimi, “β-Ga2O3 Nanoflakes/p-Si Heterojunction Self-Powered Photodiodes”, Mater. Today Commun. 24, 101105, (2020).

A. Hernandez, M. M. Islam, P. Saddatkia, C. Codding, P. Dulal, S. Agarwal, Janover, S. Novak, M. Huang, T. Dang, et al. “MOCVD Growth and Characterization of Conductive Homoepitaxial Si-Doped Ga2O3”, Results Phys. 25, 104167 (2021).

Z. Wu, Z. Jiang, P. Song, P. Tian, L. Hu, R. Liu, Z. Fang, J. Kang, T. Zhang, “Nanowire-Seeded Growth of Single-Crystalline (010) β-Ga2O3 Nanosheets with High Field-Effect Electron Mobility and On/Off Current Ratio”, Small 15, 1900580 (2019).

J. Yan, Y. Lu, G. Chen, M. Yang, Z. Gu, “Advances in liquid metals for biomedical applications”, Chem. Soc. Rev. 47, 2518 (2018).

K. L. Chen, G. J. Jiang, K. W. Chang, et al. “Gas sensing properties of indium–gallium–zinc–oxide gas sensors in different light intensity”, Analytical Chemistry Research 10, 8 (2015).

X. Chen, J. Liu, J. Ni, et al. “Wide-spectrum Mg and Ga co-doped ZnO TCO thin films for solar cells grown via magnetron sputtering with H2 introduction”, Applied Surface Science 328, 193 (2015).

A. Chen, K. Zhu, “Effects of TCO work function on the performance of TCO/n-Si hetero-junction solar cells”, Solar Energy 107, 195 (2014).

T. Minami, T. Nakatani, T. Miyata, et al., “Multicolor-emitting thin-film electroluminescent devices using Ga2O3 phosphors co-doped with Mn and Cr”, Journal of Vacuum Science & Technology A Vacuum Surfaces &Films 18 (4) 1234 (2000).

X. Zhang , D. Jiang, M. Zhao , H. Zhang , M. Li , M. Xing , J. Han , A. E. Romanov, “The effect of annealing temperature on Ga2O3 film properties”, Journal of Physics: Conference Series 1965, 012066, (2021).

M. Singh, M. A. Casbon, M. J. Uren, J. W. Pomeroy, S. Dalcanale, S. Karboyan, P. J. Tasker, M. H. Wong, K. Sasaki, A. Kuramata, et al., “Pulsed Large Signal RF Performance of Field-Plated Ga2O3 MOSFETs”, IEEE Electron Device Lett. 39 , 1572 (2018).

A. K. Singh, M. Gupta, V. Sathe, Y. S. Katharria, “Effect of Annealing Temperature on β-Ga2O3 Thin Films Deposited by RF Sputtering Method”, Superlattices Microstruct. 156, 106976 (2021).

C. V. Ramana, E. J. Rubio, C. D. Barraza, et al., “Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films”, Journal of Applied Physics 115 (115) 043508, (2014).

S. Mobtakeri, Y. Akaltun, A. Ozer, M. Kılıç, E. S. Tüzemen, E. Gür, “Gallium oxide films deposition by RF magnetron sputtering; a detailed analysis on the effects of deposition pressure and sputtering power and annealing”, Ceramics International 47, 1721 (2021).

M. K. Yadav, A. Mondal, S. Das, S. K. Sharma, A. Bag, “Impact of Annealing Temperature on Band-Alignment of PLD Grown Ga2O3/Si (100) Heterointerface”, J. Alloys Compd. 819, 153052 (2020).

H. Shen, K. Baskaran, Y. Yin, K. Tian, L. Duan, X. Zhao, A. Tiwari, “Effect of Thickness on the Performance of Solar Blind Photodetectors Fabricated Using PLD Grown β-Ga2O3 Thin Films”, J. Alloys Compd. 822, 153419 (2020).

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, “MBE Grown Ga2O3 and Its Power Device Applications”, J. Cryst. Growth 378, 591 (2013).

A. S. Pratiyush, Z. Xia, S. Kumar, Y. Zhang, C. Joishi, R. Muralidharan, S. Rajan, D. N. Nath, “MBE-Grown β-Ga2O3-Based Schottky UV-C Photodetectors With Rectification Ratio ~107”, IEEE Photonics Technol. Lett. 30, 2025 (2018).

Z. Li, T. Jiao, J. Yu, D. Hu, Y. Lv, W. Li, X. Dong, B. Zhang, Y. Zhang, Z. Feng, et al., “Single Crystalline β-Ga2O3 Homoepitaxial Films Grown by MOCVD”, Vacuum 178, 109440 (2020).

Q. Cao, L. He, H. Xiao, X. Feng, Y. Lv, J. Ma, “β-Ga2O3 Epitaxial Films Deposited on Epi-GaN/Sapphire (0001) Substrates by MOCVD”, Mater. Sci. Semicond. Process. 77 58 (2018).

C. Dezelah, J. Niinistö, K. Arstila, L. Niinistö, C. H. Winter, “Atomic Layer Deposition of Ga2O3 Films from a Dialkylamido-Based Precursor”, Chem. Mater. 18, 471 (2006).

S. H. Lee, K. M. Lee, S. W. Lee, “Influences of Process Temperature on a Phase of Ga2O3 Thin Films Grown by Atomic Layer Deposition on Sapphire”, Bull. Korean Chem. Soc. 41, 1190 (2020).

S. R. Thomas, G. Adamopoulos, Y. H. Lin, H. Faber, L. Sygellou, E. Stratakis, N. Pliatsikas, P. A. Patsalas, T. D. Anthopoulos, “High electron mobility thin-film transistors based on Ga2O3 grown by atmospheric ultrasonic spray pyrolysis at low temperatures”, Appl. Phys. Lett. 105 , 092105 (2014).

A. Ortiz, J. C. Alonso, E. Andrade, C. Urbiola, “Structural and optical characteristics of gallium oxide thin films deposited by ultrasonic spray pyrolysis”, J. Electrochem. Soc. 148 (2) F26, (2001).

Y. Kokubun, K. Miura, F. Endo, S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors”, Appl. Phys. Lett. 90 (3), 031912 (2009).

Downloads

Published

2022-12-25

How to Cite

Hopoğlu, H., Aydınoğlu, H. S., & Şenadım Tüzemen, E. (2022). Effect of Oxygen Percentage on the Energy Band Gap of Ga2O3 Thin Films Deposited by RF Magnetron Sputtering Method . Journal of NanoScience in Advanced Materials, 1(1), 12–16. https://doi.org/10.5281/zenodo.7464994

Issue

Section

Regular Article
Received 2022-12-09
Accepted 2022-12-19
Published 2022-12-25