Theoretical Computation of Structural Properties and Electronic Band Gap of CsGeCl3 Perovskite: A DFT-based Simulation
Abstract views: 272 / PDF downloads: 129
DOI:
https://doi.org/10.5281/zenodo.10367404Keywords:
lead-free perovskite, CsGeCl3, structural, electronic, DFTAbstract
This study aimed to explore the structural properties and electronic band gap of CsGeCl3 with cubic structure (Pm-3m space group, No.221). Based on the density functional theory (DFT), all calculations were performed using Ultra Soft Pseudo Potential (USPP) type potential in generalized gradient approach (GGA) with Perdew-Burke-Ernzorhof (PBE) for exchange-correlation function, as implemented in the QUANTUM ESPRESSO code. The primitive cell was used in all calculations for predicting the physical properties of solids. The computation results were compared with available literature data. It was found that the structural properties of the compound were compatible with other reported results. To understand the nature bond of the chemical bond, the bond lengths of Cs-Cl and Ge-Cl atoms were calculated. The electronic band structure was calculated along the high symmetry points (Γ-X-M-R- Γ) using an optimized geometry structure.
References
Yin W-J., Yang J-H., Kang J., Yan Y., Wei S-H. Halide perovskite materials for solar cells: a theoretical review. Journal of Materials Chemistry A, 3, 8926-8942 (2015).
Zhang W., Eperon G., Snaith H. J. Meta halide perovskites for energy applications. Nature Energy 1(6), 16048 (2016).
Yin W-J., Shi T., Yan Y. Unique properties of halide perovskites as possible origings of the superipr solar cell performance. Advanced Materials 26 (27), 4653-4658 (2014).
Schileo G., Grancini G. Halide perovskites:current issues and new strategies to push material and device stability. Jphys Energy 2, 021005 (2020).
Jong U-G., Yu C-J., Kye Y-H., Choe Y-G., Hao W., Li S. First-principles study on structural, electronic, and optical properties of inorganic Ge-based halide perovskites. Inorganic Chemistry 58 (7), 4134-4140 (2019).
Roknuzzaman Md., Ostrikov K. K., Wang H., Du A., Tesfamichael T. Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Scientific Reports 7 (1), 14025 (2017).
Erdinç B., Secuka M. N., Aycibina M., Gülebaganb S. E., Doğan E. K., Akkusa H. Ab-initio study of CsGeCl3 compound in paraelectric and ferroelectric phases. Ferroelectrics 494 (1), 138-149 (2016).
Seo D. K., Gupta N., Whangbo M.H., Hillebrecht H., Thiele G. Pressure-induced changes in the structure and band gap of CsGeX3 (X=Cl, Br) studied by electronic band structure calculations. Inorganic Chemistry 37 (3), 407-410 (1998).
Huang D., Zhao Y-J., Ju Z-P., Gan L-Y., Chen X-M., Li C-S, Yao C-M., Guo J. First-principles prediction of a promising p-type transparent conductive material CsGeCl3. Applied Physics Express 7 (4), 041202 (2014).
Tang L-C., Chang Y-C., Huang J. Y., Lee M-H., Chang C-S. First principles calculations of linear and second-order optical responses in rhombohedrally distorted perovskite ternary halides, CsGeX3 (X=Cl, Br, and I). Japanese Journal of Applied Physics 48(11R), 112402 (2009).
Krishnamoorthy T., Ding H., Yan C., Leong W. L., Baikie T., Zhang Z., Sherburne M., Li S., Asta M., Mathews N., Mhaisalkar S. G. Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A, 3, 23829-23832 (2015).
Walters G., Sargent E. H. Electro-optic response in germanium halide perovskites. The Journal of Physical Chemistry Letters 9 (5), 1018-1027 (2018).
Han N. T., Dien V. K., Lin M-F. Electronic and optical properties of CsGeX3 (X=Cl,Br, and I) compounds. ACS Omega 7, 25210-25218 (2022).
Wuttig M., Schön C-F., Schumacher M., Robertson J., Golub P., Bousquet E., Gatti C., Raty J-Y. Halide perovskites: Advanced photovoltaic materials empowered by a unique bonding mechanism. Advanced Functional Materials 32 (2) 2110166 (2021).
Zhao Z., Li Z., Zou Z. Electronic structure, and optical properties of monoclinic clinobisvanite BiVO4. Physical Chemistry Chemical Physics 13, 4746-4753 (2011).
Inoue Y., Kubokawa T., Sato K. Photocatalytic activity of alkali-metal titanates combined with ruthenium in the decomposition of water. The Journal of Physical Chemistry, 95(10), 4059-4063 (1991).
Winkler B. Pressure-induced change of the stereochemical activity a lone electron pair. The Journal of Chemical Phsycis 108 (13) 5506-5509 (1997).
Nik Y. R., Reyhani A., Farjami-Shayesteh S., Mortazavi S. Z. Photocurrent enhancement of hybrid perovskite CsGeBr3 assisted two-dimensional WS2 nano-flakes based on electron-hole mobility improvement. Optical Materials 112, 110754 (2021).
Tag L-C., Chang Y-C., Huang J-Y., Lee M-H, Chang C-S. First principles calculations of linear and second-order optical responses in rhombohedrally distorted perovskite ternary halides, CsGeX3 (X=Cl, Br and I). Japanese Journal of Applied Physics 48, 112403 (2009).
Dias A. C., Lima M. P., Silva J. L. F. Role of structural phases and octahedra distortions in the optoelectronic and excitonic properties of CsGeX3 (X=Cl, Br, I) perovskites. The Journal of Physical Chemistry 125 (35), 19142-19155 (2021).
Brik M. G. Comparative first-principles calculations of electronic, optical, and elastic anisotropy properties of CsXBr3 (X=Ca, Ge,Sn) crystals. Solid State Communications 151, 1733-1738 (2011).
Körbel S., Marques M. A. L., Botti S. Stability and electronic proeprties of new inorganic perovskites from high throughput: Ab initio calculations. Journal of Materials Chemistry 4, 3157-3167 (2016).
Rahaman Md. Z., Hossain A. K. M. A. Effect of metal doping on the visible light absoption, electronic structure and mechanical properties of non-toxic metal halide CsGeCl3. RSC Advances 8, 33010 (2018).
Qian J., Xu B., Tian W. A comprehensive theoretical study of halide perovskites ABX3. Organic Electronics 37, 61-73 (2016).
Idrissi S., Ziti S., Labrim H., Bahmad L. Band gaps of the solar perovskites photovoltaic CsXCl3 (X=Sn, Pb or Ge). Materials Science in Semiconductor Processing 122, 10548 (2021).
Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical review Letters 78, 1396 (1996). [27] Giannozzi P., Baroni S., Bonini N., Calandra M. Car R. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum-simulations of materials. Journal of Physics: Condensed Matter 21(39), 395502 (2009). [28] Monkhorst H. J., Pack J. D. Special points for Brillouin-zone integrations. Physical Review B 13, 5188 (1976). [29] Momma K. And Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography 44, 1272-1276 (2011).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of NanoScience in Advanced Materials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-10-11
Published 2023-12-22