Tailoring Magnetic Properties of Fe-CoNi Core-Shell Nanostructures by using Two-Step Electrodeposition Method
Abstract views: 189 / PDF downloads: 122
DOI:
https://doi.org/10.5281/zenodo.8007891Keywords:
Fe-CoNi Core-Shell NWs, Two-step Electrodeposition, Magnetization reversal mechanism, ZFC-FC curveAbstract
Core-shell nanogeometries are class of nonstructural materials have been lively in the area of research for their sizable applications. Iron (Fe) electrodeposited inside Cobalt-Nickle (CoNi) alloy nanotubes (NTs) were fabricated using a two-step dc electrodeposition method within the nanopores of anodized aluminum oxide (AAO) template. Fe-CoNi core-shell nano architectures were crystalline in nature. The X-ray diffraction and electron microscopy confirmed the presence of face cubic centre (fcc) in both Fe and CoNi at core and shell region. Curling magnetization reversal mechanism has been explained by angular dependence of coercivity (Hc). At Low temperature Hc of NTs and core-shell nanostructures follow the thermal activation model. Temperature dependence of Hc of both nanoconfiguration ensue the 3/2 power law for the field dependence of energy barrier. Deviation between FC and ZFC decline progressively with rise in temperature.
References
Iijima, S. "Helical microtubules of graphitic carbon", Nature 354 (6348) 56-58 (1991).
Bauer, U., Emori, S., and Beach, G.S.D. "Voltage-controlled domain wall traps in ferromagnetic nanowires", Nature nanotechnology 8 (6) 411-416 (2013).
Wang, J. "Biomolecule-functionalized nanowires: from nanosensors to nanocarriers", Chemphyschem 10 (11) 1748-55 (2009).
Park, S., Ko, H., Kim, S., and Lee, C. "Role of the Interfaces in Multiple Networked One-Dimensional Core–Shell Nanostructured Gas Sensors", ACS Applied Materials & Interfaces 6 (12) 9595-9600 (2014).
Paravannoor, A., Ranjusha, R., Asha, A.M., Vani, R., Kalluri, S., Subramanian, K.R.V., Sivakumar, N., Kim, T.N., Nair, S.V., and Balakrishnan, A. "Chemical and structural stability of porous thin film NiO nanowire based electrodes for supercapacitors", Chemical Engineering Journal 220 360-366 (2013).
Kaydashev, V.E., Kaidashev, E.M., Peres, M., Monteiro, T., Correia, M.R., Sobolev, N.A., Alves, L.C., Franco, N., and Alves, E. "Structural and optical properties of Zn0.9Mn0.1O/ZnO core-shell nanowires designed by pulsed laser deposition", Journal of Applied Physics 106 (9) (2009).
Ali, S.S., Li, W.J., Javed, K., Shi, D.W., Riaz, S., Liu, Y., Zhao, Y.G., Zhai, G.J., and Han, X.F. "Utilizing the anti-ferromagnetic functionality of a multiferroic shell to study exchange bias in hybrid core–shell nanostructures", Nanoscale 7 (32) 13398-13403 (2015).
El-Toni, A.M., Habila, M.A., Labis, J.P., Alothman, Z.A., Alhoshan, M., Elzatahry, A.A., and Zhang, F. "Design, synthesis and applications of core–shell, hollow core, and nanorattle multifunctional nanostructures", Nanoscale 8 (5) 2510-2531 (2016).
Irfan, M., Wang, C.J., Khan, U., Li, W.J., Zhang, X.M., Kong, W.J., Liu, P., Wan, C.H., Liu, Y.W., and Han, X.F. "Controllable synthesis of ferromagnetic–antiferromagnetic core–shell NWs with tunable magnetic properties", Nanoscale 9 (17) 5694-5700 (2017).
Zhang, X.M., Li, W.J., Irfan, M., Parajuli, S., Wei, J.W., Yan, Z.R., Wang, X., Ahmad, N., Feng, J.F., Yu, G.Q., and Han, X.F. "Fabrication and characterization of YIG nanotubes", Journal of Magnetism and Magnetic Materials 482 358-363 (2019).
Chen, Y.-J., Xiao, G., Wang, T.-S., Ouyang, Q.-Y., Qi, L.-H., Ma, Y., Gao, P., Zhu, C.-L., Cao, M.-S., and Jin, H.-B. "Porous Fe3O4/Carbon Core/Shell Nanorods: Synthesis and Electromagnetic Properties", The Journal of Physical Chemistry C 115 (28) 13603-13608 (2011).
Pal, B., Dhara, S., Giri, P.K., and Sarkar, D. "Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route", Journal of Alloys and Compounds 615 378-385 (2014).
Chen, Y.-J., Gao, P., Wang, R.-X., Zhu, C.-L., Wang, L.-J., Cao, M.-S., and Jin, H.-B. "Porous Fe3O4/SnO2 Core/Shell Nanorods: Synthesis and Electromagnetic Properties", The Journal of Physical Chemistry C 113 (23) 10061-10064 (2009).
Jie, J., Zhang, W., Bello, I., Lee, C.-S., and Lee, S.-T. "One-dimensional II–VI nanostructures: Synthesis, properties and optoelectronic applications", Nano Today 5 (4) 313-336 (2010).
Rudolph, A., Soda, M., Kiessling, M., Wojtowicz, T., Schuh, D., Wegscheider, W., Zweck, J., Back, C., and Reiger, E. "Ferromagnetic GaAs/GaMnAs Core−Shell Nanowires Grown by Molecular Beam Epitaxy", Nano Letters 9 (11) 3860-3866 (2009).
Al-Kaysi, R.O., Ghaddar, T.H., and Guirado, G. "Fabrication of One-Dimensional Organic Nanostructures Using Anodic Aluminum Oxide Templates", Journal of Nanomaterials 2009 436375 (2009).
Tian, Y.T., Meng, G.M., Wang, G.Z., Phillipp, F., Sun, S.H., and Zhang, L.D. "Step-shaped bismuth nanowires with metal–semiconductor junction characteristics", Nanotechnology 17 (4) 1041 (2006).
Chen, J.Y., Ahmad, N., Shi, D.W., Zhou, W.P., and Han, X.F. "Synthesis and magnetic characterization of Co-NiO-Ni core-shell nanotube arrays", Journal of Applied Physics 110 (7) (2011).
Narayanan, T.N., Shaijumon, M.M., Ajayan, P.M., and Anantharaman, M.R. "Synthesis of High Coercivity Core–Shell Nanorods Based on Nickel and Cobalt and Their Magnetic Properties", Nanoscale Research Letters 5 (1) 164 (2009).
Wang, J., Xiong, W., Huang, L., Li, Y., Zuo, Z., Hu, X., Wang, T., Xiao, J.Q., and Hu, J. "Electrochemical synthesis of core-shell Co-Ni nanorod arrays with facilely regulated magnetic properties", Physica B: Condensed Matter 567 113-117 (2019).
Chen, Y., Duan, J., Yao, H., Mo, D., Wang, T., Sun, Y., and Liu, J. "Preparation and magnetic properties of Cu-Ni core-shell nanowires in ion-track templates", Journal of Wuhan University of Technology-Mater. Sci. Ed. 30 (4) 665-669 (2015).
Han, X.-F., Shamaila, S., Sharif, R., Chen, J.-Y., Liu, H.-R., and Liu, D.-P. "Structural and Magnetic Properties of Various Ferromagnetic Nanotubes", Advanced Materials 21 (45) 4619-4624 (2009).
Zeng, H., Skomski, R., Menon, L., Liu, Y., Bandyopadhyay, S., and Sellmyer, D.J. "Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays", Physical Review B 65 (13) 134426 (2002).
Hansen, M.F. and Mørup, S. "Estimation of blocking temperatures from ZFC/FC curves", Journal of Magnetism and Magnetic Materials 203 (1) 214-216 (1999).
Sharif, R., Shamaila, S., Shaheen, F., Chen, J.Y., Khaleeq-ur-Rahman, M., and Hussain, K. "Bloch law for ferromagnetic nanotubes", Applied Physics Letters 102 (1) (2013).
Bruvera, I.J., Mendoza Zélis, P., Pilar Calatayud, M., Goya, G.F., and Sánchez, F.H. "Determination of the blocking temperature of magnetic nanoparticles: The good, the bad, and the ugly", Journal of Applied Physics 118 (18) (2015).
Livesey, K.L., Ruta, S., Anderson, N.R., Baldomir, D., Chantrell, R.W., and Serantes, D. "Beyond the blocking model to fit nanoparticle ZFC/FC magnetisation curves", Scientific Reports 8 (1) 11166 (2018).
Concas, G., Congiu, F., Muscas, G., and Peddis, D. "Determination of Blocking Temperature in Magnetization and Mössbauer Time Scale: A Functional Form Approach", The Journal of Physical Chemistry C 121 (30) 16541-16548 (2017).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Journal of NanoScience in Advanced Materials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-05-29
Published 2023-06-25