Evolution of Ultra High Molecular Weight Polyethylene Synthesis: A Comprehensive Review of Phenoxy-Imine Catalysts for Enhanced Material Properties and Industrial Perspective


DOI:
https://doi.org/10.5281/zenodo.15655838Keywords:
Ultra High Molecular Weight Polyethylene, Phenoxy-Imine catalyst, UHMWPEAbstract
More than 60 years after its first synthesis, Ultra High Molecular Weight Polyethylene (UHMWPE) remains a material of choice for numerous applications in biomedical, energy storage, and industrial parts manufacturing. Its basic and inert chain structure, semi-crystalline morphology, low friction coefficient, and wear-resistant properties make it an ideal candidate for knee and hip joints, battery separators, and low-wear, low-friction equipment parts. The properties of UHMWPE change significantly with variations in molecular weight, polydispersity, and chain entanglements. Therefore, the choice of catalyst-cocatalyst-scavenger systems in UHMWPE production plays a crucial role in determining the material's properties and quality. Since the late 1990s, the development of the 'ligand-based catalyst development strategy' and the introduction of the Phenoxy-Imine (FI) ligated Titanium catalyst by Fujita and coworkers have prompted many researchers to focus on FI catalysts and their applications in UHMWPE synthesis. Disentangled Ultra High Molecular Weight Polyethylene (dUHMWPE) synthesized using specific FI catalysts, particularly those with fluoroaniline-containing ligands, have exhibited very high activity and demonstrated 'living polymerization' characteristics. This study provides a concise review of UHMWPE catalysts, with a special emphasis on the phenoxy-imine class of post-metallocene catalysts.
References
Patel, K., Chikkali, S.H., Sivaram, S., Ultrahigh molecular weight polyethylene: Catalysis, structure, properties, processing and applications, Progress in Polymer Science 109 101290 (2020).
Kirschbaum, R., van Dingenen, J.L.J., Advances in gel-spinning technology and Dyneema fiber applications, in: Lemstra, P.J., Kleintjens, L.A. (Eds.) Integration of Fundamental Polymer Science and Technology—3, Springer Netherlands, Dordrecht pp. 178-198 (1989).
Markets&Markets, Ultra-High Molecular Weight Polyethylene Market by Form (Sheets, Rods & Tubes, Fibers, Films, Tapes), End-Use Industry (Aerospace, Defense & Shipping, Healthcare & Medical, Mechanical Equipment, Consumer Goods), Region - Global Forecast to 2027, https://www.marketsandmarkets.com/Market-Reports/ultra-high-molecular-weight-polyethylene-market-257883188.html, (2023).
Kaminsky, W., Highly active metallocene catalysts for olefin polymerization, Journal of the Chemical Society, Dalton Transactions (9) 1413-1418 (1998).
Shamiri, A., Chakrabarti, M.H., Jahan, S., Hussain, M.A., Kaminsky, W., Aravind, P.V., Yehye, W.A., The Influence of Ziegler-Natta and Metallocene Catalysts on Polyolefin Structure, Properties, and Processing Ability, Materials 7 (7) 5069-5108 (2014).
Kaminsky, W., The discovery of metallocene catalysts and their present state of the art, Journal of Polymer Science Part A: Polymer Chemistry 42 (16) 3911-3921 (2004).
Chum, P.S., Kruper, W.J., Guest, M.J., Materials Properties Derived from INSITE Metallocene Catalysts, Advanced Materials 12 (23) 1759-1767 (2000).
Chum, P.S., Swogger, K.W., Olefin polymer technologies—History and recent progress at The Dow Chemical Company, Progress in Polymer Science 33 (8) 797-819 (2008).
Fujita, T., Kawai, K., FI Catalysts for Olefin Oligomerization and Polymerization: Production of Useful Olefin-Based Materials by Unique Catalysis, Topics in Catalysis 57 (10) 852-877 (2014).
Makio, H., Terao, H., Iwashita, A., Fujita, T., FI Catalysts for Olefin Polymerization—A Comprehensive Treatment, Chemical Reviews 111 (3) 2363-2449 (2011).
Younkin, T.R., Connor, E.F., Henderson, J.I., Friedrich, S.K., Grubbs, R.H., Bansleben, D.A., Neutral, Single-Component Nickel (II) Polyolefin Catalysts That Tolerate Heteroatoms, Science 287 (5452) 460-462 (2000).
Severn, J.R., Recent Developments in Supported Polyolefin Catalysts: A Review, in: Albunia, A.R., Prades, F., Jeremic, D. (Eds.) Multimodal Polymers with Supported Catalysts: Design and Production, Springer International Publishing, Cham pp. 1-53 (2019).
Velikova, M., Study of the effect of the nature of catalyst systems on the molecular structure and properties of ultra-high molecular weight polyethylene, European Polymer Journal 37 (6) 1255-1262 (2001).
Hoff, R., Handbook of Transition Metal Polymerization Catalysts, 2nd Edition ed., John Wiley & Sons, Inc (2018).
Jamjah, R., Zohuri, G.H., Javaheri, M., Nekoomanesh, M., Ahmadjo, S., Farhadi, A., Synthesizing UHMWPE Using Ziegler-Natta Catalyst System of MgCl2(ethoxide type)/ TiCl4/tri-isobutylaluminum, Macromolecular Symposia 274 (1) 148-153 (2008).
Padmanabhan, S., Sarma, K.R., Rupak, K., Sharma, S., Synthesis of ultra high molecular weight polyethylene: A differentiate material for specialty applications, Materials Science and Engineering: B 168 (1) 132-135 (2010).
Padmanabhan, S., Sarma, K.R., Sharma, S., Synthesis of Ultrahigh Molecular Weight Polyethylene Using Traditional Heterogeneous Ziegler−Natta Catalyst Systems, Industrial & Engineering Chemistry Research 48 (10) 4866-4871 (2009).
Padmanabhan, S., Sarma, K.R., Sharma, S., Patel, V., Controlled Catalyst Dosing: An Elegant Approach in Molecular Weight Regulation for UHMWPE, Macromolecular Reaction Engineering 3 (5-6) 257-262 (2009).
Shin, Y.-j., Zhang, H.-x., Yoon, K.-B., Lee, D.-h., Preparation of ultra high molecular weight polyethylene with MgCl2/TiCl4 catalysts: Effect of temperature and pressure, Macromolecular Research 18 (10) 951-955 (2010).
Zhang, H., Shin, Y.-j., Lee, D.-h., Yoon, K.-B., Preparation of ultra high molecular weight polyethylene with MgCl 2/TiCl4 catalyst: Effect of internal and external donor on molecular weight and molecular weight distribution, Polymer Bulletin - POLYM BULL 66 627-635 (2011).
Zhang, H.-x., Shin, Y.-j., Lee, D.-h., Yoon, K.-B., Preparation of ultra high molecular weight polyethylene with MgCl2/TiCl4 catalyst: Effect of hydrogen and cocatalyst on molecular weight and molecular weight distribution, Macromolecular Research 20 (1) 112-115 (2012).
Gupta, V.K., Ravindranathan, M., Studies on magnesium dichloride-2,2-dimethoxypropane — titanium tetrachloride catalyst system for propylene polymerization, Polymer 37 (8) 1399-1403 (1996).
Ruff, M., Paulik, C., Controlling Polyolefin Properties by In-Reactor Blending, 1–Polymerization Process, Precise Kinetics, and Molecular Properties of UHMW-PE Polymers, Macromolecular Reaction Engineering 6 (8) 302-317 (2012).
Ruff, M., Paulik, C., Controlling Polyolefin Properties by In-Reactor Blending: 2. Particle Design, Macromolecular Reaction Engineering 7 (2) 71-83 (2013).
Ruff, M., Lang, R.W., Paulik, C., Controlling Polyolefin Properties by In-Reactor Blending: 3. Mechanical Properties, Macromolecular Reaction Engineering 7 (7) 328-343 (2013).
Philippaerts, A., Ensinck, R., Baulu, N., Cordier, A., Woike, K., Berthoud, R., De Cremer, G., Severn, J.R., Influence of the particle size of the MgCl2 support on the performance of Ziegler catalysts in the polymerization of ethylene to ultra-high molecular weight polyethylene and the resulting polymer properties, Journal of Polymer Science Part A: Polymer Chemistry 55 (16) 2679-2690 (2017).
Lafleur, S., Berthoud, R., Ensinck, R., Cordier, A., De Cremer, G., Philippaerts, A., Bastiaansen, K., Margossian, T., Severn, J.R., Tailored bimodal ultra-high molecular weight polyethylene particles, Journal of Polymer Science Part A: Polymer Chemistry 56 (15) 1645-1656 (2018).
Zhang, W., Wu, Z., Mao, H., Wang, X., Li, J., Mai, Y., Yu, J., Particle morphology, structure and properties of nascent ultra-high molecular weight polyethylene, Royal Society Open Science 7 (8) 200663 (2020).
Alt, H.G., Köppl, A., Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization, Chemical Reviews 100 (4) 1205-1222 (2000).
Imuta, J.-I., Tsutsui, T., Yoshitugu, K., Matsugi, T., Kashiwa, N., Unique Flowability Behavior of Ethylene Copolymers Produced by a Catalyst System Comprising Ethylenebis(indenyl)hafnium Dichloride and Aluminoxane, in: Blom, R., Follestad, A., Rytter, E., Tilset, M., Ystenes, M. (Eds.) Organometallic Catalysts and Olefin Polymerization, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 427-433 (2001).
Ostoja Starzewski, K.A., Xin, B.S., Steinhauser, N., Schweer, J., Benet-Buchholz, J., Donor–Acceptor Metallocene Catalysts for the Production of UHMW-PE: Pushing the Selectivity for Chain Growth to Its Limits, Angewandte Chemie International Edition 45 (11) 1799-1803 (2006).
Baier, M.C., Zuideveld, M.A., Mecking, S., Post-Metallocenes in the Industrial Production of Polyolefins, Angewandte Chemie International Edition 53 (37) 9722-9744 (2014).
Li, Y., Lai, X., Xu, X., So, Y.-M., Du, Y., Zhang, Z., Pan, Y., Theoretical Study on Ethylene Polymerization Catalyzed by Half-Titanocenes Bearing Different Ancillary Groups, Catalysts 11 (11) 1392 (2021).
Cano, J., Kunz, K., How to synthesize a constrained geometry catalyst (CGC) – A survey, Journal of Organometallic Chemistry 692 (21) 4411-4423 (2007).
Klosin, J., Fontaine, P.P., Figueroa, R., Development of Group IV Molecular Catalysts for High Temperature Ethylene-α-Olefin Copolymerization Reactions, Accounts of Chemical Research 48 (7) 2004-2016 (2015).
Hasebe, K., Fujiwara, A., Nozaki, T., Miyamoto, K., Watanabe, H., 8 - Ultra-high Molecular Weight Polyethylene from Slurry INSITE™ Technology, in: Shiono, T., Nomura, K., Terano, M. (Eds.) Studies in Surface Science and Catalysis, Elsevier pp. 43-46 (2006).
Woo, J.H., Hong, S.C., Study on Immobilized Metallocene and Single-Site Catalysts for the Preparation of Ultra-High Molecular Weight Polyethylene at Various Polymerization Conditions, Polymer-Plastics Technology and Engineering 50 (15) 1557-1563 (2011).
Bruaseth, I., Bahr, M., Gerhard, D., Rytter, E., Pressure and trimethylaluminum effects on ethene/1-hexene copolymerization with methylaluminoxane-activated (1,2,4-Me3Cp)2ZrCl2: Trimethylaluminum suppression of standard termination reactions after 1-hexene insertion, Journal of Polymer Science Part A: Polymer Chemistry 43 (12) 2584-2597 (2005).
Williams, T.J., Smith, A.D.H., Buffet, J.-C., Turner, Z.R., O'Hare, D., Group 4 constrained geometry complexes for olefin (co)polymerisation, Molecular Catalysis 486 110872 (2020).
Domski, G.J., Rose, J.M., Coates, G.W., Bolig, A.D., Brookhart, M., Living alkene polymerization: New methods for the precision synthesis of polyolefins, Progress in Polymer Science 32 (1) 30-92 (2007).
Chikkali, S., Metal-catalyzed polymerization : fundamentals to applications, CRC Press, Boca Raton (2018).
Mitani, M., Mohri, J.-i., Yoshida, Y., Saito, J., Ishii, S., Tsuru, K., Matsui, S., Furuyama, R., Nakano, T., Tanaka, H., Kojoh, S.-i., Matsugi, T., Kashiwa, N., Fujita, T., Living Polymerization of Ethylene Catalyzed by Titanium Complexes Having Fluorine-Containing Phenoxy−Imine Chelate Ligands, Journal of the American Chemical Society 124 (13) 3327-3336 (2002).
van der Werff, H., Heisserer, U., 3 - High-performance ballistic fibers: Ultra-high molecular weight polyethylene (UHMWPE), in: Chen, X. (Ed.) Advanced Fibrous Composite Materials for Ballistic Protection, Woodhead Publishing pp. 71-107 (2016).
Christakopoulos, F., Unraveling Nascent Disentangled Ultra-High Molecular Weight Polyethylene, ETH Zurich, (2021).
Christakopoulos, F., van Heugten, P.M.H., Tervoort, T.A., Additive Manufacturing of Polyolefins, Polymers 14 (23) 5147 (2022).
Dario Romano, S.R., Sanjay Rastogi, Activation of a Bis-(Phenoxyimine) Titanium (IV) Catalyst Using Different Aluminoxane Co-Catalysts, Macromolecular Symposia 356 (2015).
Rastogi, S., Yao, Y., Ronca, S., Bos, J., van der Eem, J., Unprecedented High-Modulus High-Strength Tapes and Films of Ultrahigh Molecular Weight Polyethylene via Solvent-Free Route, Macromolecules 44 (14) 5558-5568 (2011).
Ronca, S., Romano, D., Forte, G., Andablo-Reyes, E., Rastogi, S., Improving the performance of a catalytic system for the synthesis of ultra high molecular weight polyethylene with a reduced number of entanglements, Advances in Polymer Technology 31 (3) 193-204 (2012).
Romano, D., Andablo-Reyes, E.A., Ronca, S., Rastogi, S., Effect of a cocatalyst modifier in the synthesis of ultrahigh molecular weight polyethylene having reduced number of entanglements, Journal of Polymer Science Part A: Polymer Chemistry 51 (7) 1630-1635 (2013).
Jones, R.L., Armoush, M.Z., Harjati, T., Elder, M., Hummel, A.A., Sullivan, J., Catalysts for UHMWPE and UHMWPE-copolymers, Inorganica Chimica Acta 364 (1) 275-281 (2010).
Damavandi, S., Sandaroos, R., Shamekhi, M.A., Synthesis and Application of FI Catalyst for Ethylene Polymerization, Journal of Macromolecular Science, Part A 49 (4) 339-347 (2012).
Li, F., Bai, Y., He, J., Song, T., Gao, W., Mu, X., Mu, Y., Synthesis of Ultrahigh Molecular Weight Ethylene-Based (Co)polymers with Titanium Complexes Bearing Nonsymmetric Amine-bis(phenolate) Ligands, Macromolecules 56 (17) 6764-6775 (2023).
Tuskaev, V.A., Magomedov, K.F., Gagieva, S.C., Kurmaev, D.A., Nelyubina, Y.V., Golubev, E.K., Evseeva, M.D., Vasil’ev, V.G., Nikiforova, G.G., Buzin, M.I., Bogdanov, V.S., Bulychev, B.M., Olefin Polymerization Behavior of Titanium(IV) Complexes with Fluorinated and Non-fluorinated Aliphatic Phenoxyimine Ligands, Chinese Journal of Polymer Science (2023).
Antonov, A.A., Bryliakov, K.P., Post-metallocene catalysts for the synthesis of ultrahigh molecular weight polyethylene: Recent advances, European Polymer Journal 142 110162 (2021).
Klapper, M., Joe, D., Nietzel, S., Krumpfer, J.W., Müllen, K., Olefin Polymerization with Supported Catalysts as an Exercise in Nanotechnology, Chemistry of Materials 26 (1) 802-819 (2014).
Naundorf, C., Matsui, S., Saito, J., Fujita, T., Klapper, M., Müllen, K., Ultrahigh molecular weight polyethylene produced by a bis(phenoxy-imine) titanium complex supported on latex particles, Journal of Polymer Science Part A: Polymer Chemistry 44 (9) 3103-3113 (2006).
Gagieva, S.C., Tuskaev, V.A., Takazova, R.U., Buyanovskaya, A.G., Smirnova, O.V., Bravaya, N.M., Bulychev, B.M., Ethylene polymerization using immobilized fluorine-containing bis-salicylidenimine-titanium complexes, Russian Chemical Bulletin 68 (11) 2114-2118 (2019).
Nakayama, Y., Saito, J., Bando, H., Fujita, T., MgCl2/R′nAl(OR)3−n: An Excellent Activator/Support for Transition-Metal Complexes for Olefin Polymerization, Chemistry – A European Journal 12 (29) 7546-7556 (2006).
Gote, R.P., Romano, D., van der Eem, J., Zhao, J., Zhou, F., Rastogi, S., Unprecedented Mechanical Properties in Linear UHMWPE Using a Heterogeneous Catalytic System, Macromolecules 56 (1) 361-378 (2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of NanoScience in Advanced Materials

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2025-01-26
Published 2025-06-26