Magnetic and Magnetocaloric Properties of 0.5Pr0.67Ba0.22Sr0.11Mn0.95Fe0.05O3/ 0.5Pr0.67Ba0.22Sr0.11Mn0.9Fe0.1O3 Composite


Abstract views: 187 / PDF downloads: 108

Authors

DOI:

https://doi.org/10.5281/zenodo.7465017

Keywords:

Manganites, X-ray diffraction, Rietveld refinement, Magnetization, Relative cooling power

Abstract

In the present work, the magnetic and magnetocaloric properties of 0.5Pr0.67Ba0.22Sr0.11Mn0.95Fe0.05O3 /0.5Pr0.67Ba0.22Sr0.11Mn0.9Fe0.1O3 (0.5PBSMF0.05/0.5PBSMF0.1) composite have been investigated. Our composite 0.5PBSMF0.05/0.5PBSMF0.1 has been synthesized using the solid–state reaction.  X-ray diffraction (XRD) at room temperature has been used to carry out the structural properties. In order to investigate the magnetic and magnetocaloric properties of the samples, magnetization measurements dependence on temperature and magnetic field have been performed by using physical property measurement system. XRD results indicate that all our simples crystallized in the orthorhombic structure with Pnma space group. Magnetization measurements versus temperature for the composite reveal two magnetic transition temperatures associated to both manganites, which induces an enlargement of the magnetic entropy change peak. Based on Maxwell relation, the maximum magnetic entropy change () of the composite has been calculated as 1.18×10-3 Jkg-1K-1, which corresponds to relative cooling power (RCP) about 17.8 Jkg−1 under a magnetic field change of 5T.

References

Jin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R., Chen, L.H. “Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films”, Science 264, 413–415 (1994).

Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V.K., Gschneider Jr, K.A., Osbore, M., Anderson, I., “Magnetic properties and magnetic entropy change in spinels (Cd,M)Cr2S4 with M:Cu or Fe”, Journal of Applied Physics 103, 07B315 (2008).

Gamzatov, AG., Aliev, AM., Batdalov, AB., Ahmadvand, H., Salamati, H., Kameli, P., “Specific heat and magnetocaloric effect of Pr1-xAgxMnO3”, J Mater Sci 49, 294–299 (2014).

Abdel-Khalek, E.K., EL-Meligy, W.M., Mohamed, E.A., Amer, T.Z., Sallam. H.A., “Study of the relationship between electrical and magnetic properties and Jahn-Teller distortion in R(0.7)Ca(0.3)Mn(0.95)Fe(0.05)O(3) perovskites”, J. Phys. Condens. Matter 21, 026003 (2009).

Thaljaoui, R., Boujelben, W., Pe˛kała, M., Pe˛kała, K., “Structural and electrical properties of monovalent doped manganites Pr0.6- Sr0.4-xKxMnO3 (x = 0, 0.05 and 0.1)”. J Supercond Nov Magn 26,1625–1630(2013).

Coey, JMD., Viret, M., von Molnar, S., “Mixed-valence manganites”. Adv Phys (48), 167–293(1999).

Hong, S.C., Kim, S.J., Hahn, E.J., Park, S. l., Kim, C.S., “Magnetic Refrigeration Properties of La0.8Ca0.2Mn0.9957Fe0.01O3”, IEEE Trans. Magn. 45, (6) 2565 - 2568 (2009).

Tishin, A.M., Spichkin, Y.I., “The magnetocaloric effect and its applications”. Institute of Physics Publishing, Bristol (2003).

Millis, AJ., Littlewood, PB., Shraiman, BI., “Double exchange alone does not explain the resistivity of La1-xSrxMnO3”. Phys Rev Lett 74, 5144–5147 (1995).

Chang, Y. L., Huang, Q., Ong, C. K., J. “Effect of Fe doping on the magnetotransport properties in Nd0.67Sr0.33MnO3 manganese oxides”, Appl. Phys. 91, 789 (2002).

Baazaoui, M., Zemni, S., Boudard, M., Rahmouni, H., Gasmi, A., Selmi, A., Oumezzine, M., “Magnetic and electrical behaviour of La0.67Ba0.33Mn1−xFexO3 perovskites”, Mater. Lett. 63, 2167-2170 (2009).

Gschneidner, K. A., Pecharsky Jr, V. K., Tsokol, A. O., “Recent developments in magnetocaloric materials”, Rep. Prog. Phys. 68, 1479-1539 (2005).

Tegus, O., Brück, E., Buschow, K .H .J., Boer, F. R., “Transition-metal-based magnetic refrigerants for room-temperature applications”, Nature 415, 150-152 (2002).

Phan, M. H., Tian S. B., Hoang D. Q., Yu S. C., Nguyen C., and Ulyanov A.N., “Large magnetic-entropy change above 300K in CMR materials”, Journal of Magnetism and Magnetic Materials 258-259 , 309–311 (2003).

Ayadi, F., Regaieg, Y., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Lecoq, H., Nowak, S., Ammara, S., Sicard, L., “Preparation of nanostructured La0.7Ca0.3− xBaxMnO3 ceramics by a combined sol–gel and spark plasma sintering route and resulting magnetocaloric properties”. J. Magn. Magn. Mater 381, 215-219 (2015).

Mathews, S. P., Kaul, S. N., “Tuning magnetocaloric effect with nanocrystallite Size”, Appl. Phys. Lett 98, 172505 (2011).

Akça, G., Kılıç Çetin, S., Ekicibil, A., “Magnetic and magnetocaloric properties of 0.5La0.7Ca0.2Sr0.1MnO3/0.5La0.7Te0.3MnO3 composite”, J. Sci. Cumhuriyet., 41, 144-151 (2020).

[ 8] Wang, G. F., Zhao, Z. R., Li, H .L., Zhang. X. F. “Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/ La0.8K0.2MnO3 nanocrystalline composite”, J. Ceramics International, 41, 9035-9040 (2015).

Snini, K., Ben Jemaa, F., Ellouze, M., Hlil, E. K., “Structural, magnetic and magnetocaloric investigations in Pr0.67Ba0.22Sr0.11Mn1-xFexO3 (0 ≤ x ≤ 0.15) manganite oxide”, J. Alloys Comp 739, 948-954 (2018).

Rietveld, H. M., “A profile refinement method for nuclear and magnetic structures”, J. Appl. Cryst 2, 65-71 (1969).

Roisnel, T., Rodriguez-Carvajal. J, “Computer Program FULLPROF”, LLB-LCSIM, May, (2003).

Sellami-Jmal, E., Regaieg, Y., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Njah, N., “Magnetic and Magnetocaloric Properties of La0. 65Ca0. 35MnO3/La0. 7Ca0. 2Ba0. 1MnO3 and La0. 65Ca0. 35MnO3/Pr0. 5Sr0. 5MnO3 Composite Manganites”, J. Supercond Nov Magn 28, 3121–3126 (2015).

Romero-Muñiz, C., Franco, V., Conde, A., “Influence of magnetic interactions between phases on the magnetocaloric effect of composites”, Appl. Phys. Lett 102 (2), 1-5 (2013)

Banerjee, B. K., “On a generalised approach to first and second order magnetic transitions”. Phys. Lett 12, 16-17 (1964).

Pecharsky, V.K., Gschneidner Jr, K.A., “Magnetocaloric effect and magnetic refrigeration”, J. Magn. Magn. Mater 200, 44-56(1999).

Gschneidner Jr, K. A., Pecharsky, V. K., “Magnetocaloric Materials”, Annu. Rev. Mater. Sci. 30, 387-429 (2000).

Nasri, A., Hlil, E. K., Lehlooh, A. F., Ellouze, M., Elhalouani, F., “Study of magnetic transition and magnetic entropy changes of Pr0.6Sr0.4MnO3 and Pr0.6Sr0.4Mn0.9Fe0.1O3 compounds”, Eur. Phys. J. Plus 131, 110 (2016).

Zouari, S., Kahn, M. L., Ellouze, M, Elhalouani, F., “Effect of iron substitution on the physico-chemical properties of Pr0.6La0.1Ba0.3Mn1−xFexO3 manganites (with 0 ≤ x ≤0.3)”, Eur. Phys. J. Plus 130, 177 (2015).

Xianyu Wen-xu, Li Bao-he, Qian Zheng-nan, Jin Han-min, “Effect of Fe doping in La1−xSrxMnO3”, J. Appl. Phys. 86, 5164 (1999).

Jian-Wang Cai, Cong Wang, Bao-Gen Shen, Jian-Gao Zhao, Wen-Shan Zhan, “Colossal magnetoresistance of spin-glass perovskite La0.67Ca0.33Mn0.9Fe0.1O3”, Appl. Phys. Lett 71, 1727-1729 (1997).

Sahasrabudhe, M. S., Patil, S. I., Date, S. K., Adhi, D. P., Kulkarni, S. D., Joy. P.A, Bathe. R.N, “Influence of magnetic (Fe+3) and non-magnetic (Ga+3) ion doping at Mn-site on the transport and magnetic properties of La0.7Ca0.3MnO3”, Solid State Commun 137, 595-600. (2006).

M’nassri, R., Cheikhrouhou, A., “Magnetocaloric effect in different impurity doped La0.67Ca0.33MnO3 composite”. J. Supercond. Nov. Magn 27, 421-425 (2014).

Anwar, M.S., Ahmed, F., Danish, R., Koo, B.H., “Impact of Co3O4 phase on the magnetocaloric effect and magnetoresistance in La0.7Sr0.3MnO3/Co3O4 and La0.7Ca0.3MnO3/Co3O4 ceramic composites”, Ceram. Int. 41, 631-637 (2015).

M’nassri, R., Chniba Boudjada, N., Cheikhrouhou, A., “Nearly constant magnetic entropy change involving the enhancement of refrigerant capacity in(La0.6Ba0.2Sr0.2MnO3)1−x/(Co2O3)x composite”, Ceram. Int. 42, 7447-7454 (2016) .

Phan, M-H., Yu, S-C., “Review of the magnetocaloric effect in manganite materials”, J. Magn. Magn. Mater 308, 325-340 (2007).

Downloads

Published

2022-12-25

How to Cite

Snini, K., & Ellouze, M. (2022). Magnetic and Magnetocaloric Properties of 0.5Pr0.67Ba0.22Sr0.11Mn0.95Fe0.05O3/ 0.5Pr0.67Ba0.22Sr0.11Mn0.9Fe0.1O3 Composite. Journal of NanoScience in Advanced Materials, 1(1), 20–24. https://doi.org/10.5281/zenodo.7465017

Issue

Section

Regular Article
Received 2022-11-21
Accepted 2022-12-19
Published 2022-12-25