Near-Infrared Light-Activated Antibacterial Efficiency of Flower-like MoS₂ with Varying Concentrations


Abstract views: 73 / PDF downloads: 35

Authors

DOI:

https://doi.org/10.5281/zenodo.15700915

Keywords:

Photothermal activity, flower-like MoS2, antibacterial particles, NIR irridation

Abstract

In this study, flower-like MoS2 particles with a 2H crystal structure were synthesized via a hydrothermal method to evaluate their photothermal efficiency and antibacterial activity against Staphylococcus aureus and Escherichia coli. The structural, morphological, optical, and photothermal properties of the synthesized MoS2 were comprehensively characterized. X-ray diffraction analysis confirmed that MoS2 formed as 2H with no detectable impurities, while electron microscopy revealed a flower-like morphology. Optical characterization in the 400–1000 nm wavelength range indicated a direct band gap of approximately 1.9 eV. Photothermal performance was investigated using 808 nm laser irradiation in combination with thermal imaging, which demonstrated a maximum temperature increase of 46 °C at a concentration of 1000 μg mL⁻¹ and uniform heat distribution throughout the solution. Furthermore, antibacterial tests using agar plates showed that the antibacterial activity of MoS2 was more pronounced at lower concentrations for both bacterial species, suggesting a concentration-dependent effect.

Author Biographies

Ahmed Al-Sarori, Konya Technical University

Department of Chemical Engineering, Konya Technical University, 42250, Konya, Türkiye

Abdurrahman Mustafa, Konya Technical University

Department of Chemical Engineering, Konya Technical University, 42250, Konya, Türkiye

Burak KIVRAK, Konya Technical University

Department of Metallurgical and Materials Science Engineering, Konya Technical University, 42250, Konya, Türkiye

References

Han, Q., Lau, J.W., Do, T.C., Zhang, Z., Xing, B., Near-Infrared Light Brightens Bacterial Disinfection: Recent Progress and Perspectives, ACS Applied Bio Materials 4, 3937-61 (2021).

Liu, L., Wu, W., Fang, Y., Liu, H., Chen, F., Zhang, M., et al., Functionalized MoS2 Nanoflowers with Excellent Near-Infrared Photothermal Activities for Scavenging of Antibiotic Resistant Bacteria, Nanomaterials 11, 2829 (2021).

Zumla, A., Nahid, P., Cole, S.T., Advances in the development of new tuberculosis drugs and treatment regimens, Nature Reviews Drug Discovery 12, 388-404 (2013).

Dediu, V., Ghitman, J., Gradisteanu Pircalabioru, G., Chan, K.H., Iliescu, F.S., Iliescu, C., Trends in Photothermal Nanostructures for Antimicrobial Applications, International Journal of Molecular Sciences 24, 9375 (2023).

Tang, Y., Qin, Z., Yin, S., Sun, H., Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview, Nanoscale 13, 6373-88 (2021).

Velema, W.A., van der Berg, J.P., Hansen, M.J., Szymanski, W., Driessen, A.J.M., Feringa, B.L., Optical control of antibacterial activity, Nature Chemistry 5, 924-8 (2013).

Wang, Y., Yang, Y., Shi, Y., Song, H., Yu, C., Antibiotic-Free Antibacterial Strategies Enabled by Nanomaterials: Progress and Perspectives, Adv Mater 32, 1904106 (2020).

Yang, J., Wang, C., Liu, X., Yin, Y., Ma, Y.-H., Gao, Y., et al., Gallium–Carbenicillin Framework Coated Defect-Rich Hollow TiO2 as a Photocatalyzed Oxidative Stress Amplifier against Complex Infections, Adv Funct Mater 30, 2004861 (2020).

Cai, Y., Wei, Z., Song, C., Tang, C., Han, W., Dong, X., Optical nano-agents in the second near-infrared window for biomedical applications, Chem Soc Rev 48, 22-37 (2019).

Feng, Y., Liu, L., Zhang, J., Aslan, H., Dong, M., Photoactive antimicrobial nanomaterials, Journal of Materials Chemistry B 5, 8631-52 (2017).

Li, W., Dong, K., Wang, H., Zhang, P., Sang, Y., Ren, J., et al., Remote and reversible control of in vivo bacteria clustering by NIR-driven multivalent upconverting nanosystems, Biomaterials 217, 119310 (2019).

Dong, K., Ju, E., Gao, N., Wang, Z., Ren, J., Qu, X., Synergistic eradication of antibiotic-resistant bacteria based biofilms in vivo using a NIR-sensitive nanoplatform, Chem Commun 52, 5312-5 (2016).

Zhang, A., Li, A., Zhao, W., Liu, J., Recent Advances in Functional Polymer Decorated Two-Dimensional Transition-Metal Dichalcogenides Nanomaterials for Chemo-Photothermal Therapy, Chemistry – A European Journal 24, 4215-27 (2018).

Yang, X., Li, J., Liang, T., Ma, C., Zhang, Y., Chen, H., et al., Antibacterial activity of two-dimensional MoS2 sheets, Nanoscale 6, 10126-33 (2014).

Wang, Z., Zhu, W., Qiu, Y., Yi, X., von dem Bussche, A., Kane, A., et al., Biological and environmental interactions of emerging two-dimensional nanomaterials, Chem Soc Rev 45, 1750-80 (2016).

Mondal, A., De, M., Exfoliation, functionalization and antibacterial activity of transition metal dichalcogenides, Tungsten 6, 1-16 (2024).

Ahn, E., Kim, B.S., Multidimensional Thin Film Hybrid Electrodes with MoS2 Multilayer for Electrocatalytic Hydrogen Evolution Reaction, ACS Appl Mater Interfaces 9, 8688-95 (2017).

Lim, Y.R., Song, W., Han, J.K., Lee, Y.B., Kim, S.J., Myung, S., et al., Wafer-Scale, Homogeneous MoS2 Layers on Plastic Substrates for Flexible Visible-Light Photodetectors, Adv Mater 28, 5025-30 (2016).

Acerce, M., Voiry, D., Chhowalla, M., Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat Nanotechnol 10, 313-8 (2015).

Kıvrak, B., Akyıldız, H., Akgöl, O., Karaaslan, M., Akyol, M., Polyaniline-Functionalized Nanosized Cobalt Ferrite-Decorated MoS2 Composites for Broadband Electromagnetic Wave Absorption, ACS Applied Electronic Materials 6, 8211-25 (2024).

Chaudhary, N., Khanuja, M., Abid, Islam, S.S., Hydrothermal synthesis of MoS2 nanosheets for multiple wavelength optical sensing applications, Sens Actuator A Phys 277, 190-8 (2018).

Ghosh, S., Lai, J.-Y., An insight into the dual role of MoS2-based nanocarriers in anticancer drug delivery and therapy, Acta Biomaterialia 179, 36-60 (2024).

Singh, E., Singh, P., Kim, K.S., Yeom, G.Y., Nalwa, H.S., Flexible Molybdenum Disulfide (MoS2) Atomic Layers for Wearable Electronics and Optoelectronics, ACS App Mater Interfaces 11, 11061-105 (2019).

Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A., Single-layer MoS2 transistors, Nat Nanotechnol 6, 147-50 (2011).

Kumar, A., Ahluwalia, P.K., Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te), Modell Simul Mater Sci Eng 21, 065015 (2013).

Zhao, W., Pan, J., Fang, Y., Che, X., Wang, D., Bu, K., et al., Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties, Chemistry – A European Journal 24, 15942-54 (2018).

Feng, G., Wei, A., Zhao, Y., Liu, J., Synthesis of flower-like MoS2 nanosheets microspheres by hydrothermal method, J Mater Sci Mater Electron 26, 8160-6 (2015).

Strachan, J., Masters, A.F., Maschmeyer, T., 3R-MoS2 in Review: History, Status, and Outlook, ACS Applied Energy Materials 4, 7405-18 (2021).

Jin, W., Yeh, P.-C., Zaki, N., Zhang, D., Sadowski, J.T., Al-Mahboob, A., et al., Direct Measurement of the Thickness-Dependent Electronic Band Structure of MoS2 Using Angle-Resolved Photoemission Spectroscopy, Phys Rev Lett 111, 106801 (2013).

Cheiwchanchamnangij, T., Lambrecht, W.R.L., Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2, Physical Review B 85, 205302 (2012).

Yin, W., Yu, J., Lv, F., Yan, L., Zheng, L.R., Gu, Z., et al., Functionalized Nano-MoS2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications, ACS Nano 10, 11000-11 (2016).

Gao, Q., Zhang, X., Yin, W., Ma, D., Xie, C., Zheng, L., et al., Functionalized MoS2 Nanovehicle with Near-Infrared Laser-Mediated Nitric Oxide Release and Photothermal Activities for Advanced Bacteria-Infected Wound Therapy, Small 14, 1802290

(2018).

Chng, E.L.K., Sofer, Z., Pumera, M., MoS2 exhibits stronger toxicity with increased exfoliation, Nanoscale 6, 14412-8 (2014).

Shah, P., Narayanan, T.N., Li, C.-Z., Alwarappan, S., Probing the biocompatibility of MoS2 nanosheets by cytotoxicity assay and electrical impedance spectroscopy, Nanotechnology 26, 315102 (2015).

Yin, W., Yan, L., Yu, J., Tian, G., Zhou, L., Zheng, X., et al., High-Throughput Synthesis of Single-Layer MoS2 Nanosheets as a Near-Infrared Photothermal-Triggered Drug Delivery for Effective Cancer Therapy, ACS Nano 8, 6922-33 (2014).

Getiren, B., Çıplak, Z., Gökalp, C., Yıldız, N., Novel approach in synthesizing ternary GO-Fe3O4-PPy nanocomposites for high Photothermal performance, J Appl Polym Sci 137, 48837 (2020).

AlSarori, A., Mustafa, A., Akyıldız, H., Kaya, I.C., Kaya, G.G., Non-Stoichiometric FeS2 nanoparticles as antibacterial agents with combined photothermal and photodynamic effect, Journal of Photochemistry and Photobiology A: Chemistry 462, 116260 (2025).

Mishra, S., Maurya, P.K., Mishra, A.K., 2H–MoS2 nanoflowers based high energy density solid state supercapacitor, Materials Chemistry and Physics 255, 123551 (2020).

Rajapriya, A., Keerthana, S., Viswanathan, C., Ponpandian, N., Direct growth of MoS2 hierarchical nanoflowers on electrospun carbon nanofibers as an electrode material for high-performance supercapacitors, J Alloys Compd 859, 157771 (2021).

Kıvrak, B., Akyol, M., Ekicibil, A., Investigation of structural and magnetic characteristic of pure and M-doped (M: Fe and Cu) MoS2 thin films, J Mater Sci Mater Electron 33, 16574-85 (2022).

Zheng, X., Zhu, Y., Sun, Y., Jiao, Q., Hydrothermal synthesis of MoS2 with different morphology and its performance in thermal battery, Journal of Power Sources 395, 318-27 (2018).

Sun, Z., Liao, T., Dou, Y., Hwang, S.M., Park, M.-S., Jiang, L., et al., Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets, Nature Communications 5, 3813 (2014).

Li, B., Jiang, L., Li, X., Ran, P., Zuo, P., Wang, A., et al., Preparation of Monolayer MoS2 Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water, Scientific Reports 7, 11182 (2017).

Xu, S., Li, D., Wu, P., One-Pot, Facile, and Versatile Synthesis of Monolayer MoS2/WS2 Quantum Dots as Bioimaging Probes and Efficient Electrocatalysts for Hydrogen Evolution Reaction, Adv Funct Mater 25, 1127-36 (2015).

Wilcoxon, J.P., Newcomer, P.P., Samara, G.A., Synthesis and optical properties of MoS2 and isomorphous nanoclusters in the quantum confinement regime, Journal of Applied Physics 81, 7934-44 (1997).

Wilcoxon, J.P., Samara, G.A., Strong quantum-size effects in a layered semiconductor: MoS2 nanoclusters, Physical Review B 51, 7299-302 (1995).

Chen, L., Hsieh, S.-L., Kuo, C.-H., Hsieh, S., Chen, W.-H., Chen, C.-W., et al., Novel MoS2 quantum dots as a highly efficient visible-light driven photocatalyst in water remediation, RSC Advances 10, 31794-9 (2020).

Drozdowska, K., Smulko, J., Czubek, J., Rumyantsev, S., Kwiatkowski, A., UV-assisted fluctuation-enhanced gas sensing by ink-printed MoS2 devices, Scientific Reports 14, 22172 (2024).

Roy, S., Mondal, A., Yadav, V., Sarkar, A., Banerjee, R., Sanpui, P., et al., Mechanistic Insight into the Antibacterial Activity of Chitosan Exfoliated MoS2 Nanosheets: Membrane Damage, Metabolic Inactivation, and Oxidative Stress, ACS Applied Bio Materials 2, 2738-55 (2019).

Kozbial, A., Gong, X., Liu, H., Li, L., Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2), Langmuir 31, 8429-35 (2015).

Downloads

Published

2025-06-26

How to Cite

Al-Sarori, A., Mustafa, A., & KIVRAK, B. (2025). Near-Infrared Light-Activated Antibacterial Efficiency of Flower-like MoS₂ with Varying Concentrations. Journal of NanoScience in Advanced Materials, 4(1), 1–8. https://doi.org/10.5281/zenodo.15700915

Issue

Section

Research Article
Received 2025-04-21
Accepted 2025-05-19
Published 2025-06-26