Investigation of Structural and Electrical Properties of 90%La0.67Pb0.33MnO3 + 10%A and 90%La0.67Pb0.33CoO3 + 10%A (A= MnO2, NiO, SnO2 and Cu2O) Composite Materials
DOI:
https://doi.org/10.5281/zenodo.18063772Keywords:
TIM, Magnetic Cooling, Perovskite Magnanites, XRD, SEM, CompositesAbstract
In this study, the crystal structures, surface morphologies and electrical conductivity of composite materials, La0.67Pb0.33MnO3, La0.67Pb0.33CoO3 compounds and 90%La0.67Pb0.33MnO3 + 10%A and 90%La0.67Pb0.33CoO3 + 10%A (A= MnO2, NiO, SnO2 and Cu2O), were investigated. As a result of the (X Ray Diffraction) XRD analysis, it was found that all materials have trigonal crystal symmetry (R ̅3c) . The refinements have demonstrated that MnO2, NiO, SnO2, and Cu2O compounds, which are employed in the production of composite materials, are present within both the perovskite crystal structure of these compounds and as a secondary phase in the composite materials. The results from AFM and SEM analyses align with those from XRD refinement. Electrical resistance measurements were conducted to ascertain the metal-insulator phase transition temperatures (TIM) of various compounds and composite materials. While La0.67Pb0.33MnO3 compound and these compound-based composite materials exhibited a clear TIM phase transition, no TIM phase transition was observed in the La0.67Pb0.33CoO3 compound and these compound-based composite materials.
References
Pecharsky, V.K., Gschneidner, J., K A, Giant Magnetocaloric Effect in Gd5(Si2Ge2), Physical Review Letters 78, 4494-4497 (1997).
Pecharsky, V.K., Gschneidner, K.A., Phase relationships and crystallography in the pseudobinary system Gd5Si4Gd5Ge4, Journal of Alloys and Compounds 260 (1), 98-106 (1997).
Gschneidner, K.A., Pecharsky, V.K., Magnetocaloric Materials, Annual Review of Materials Research 30, 387-429 (2000).
Nguyen, H., Nguyen, T., Preparation and magneto-caloric effect of La1-xAgxMnO3 (x= 0.10-0.30) perovskite compounds, Physica B: Condensed Matter 319, 168-173 (2002).
Guo, Z.B., Du, Y.W., Zhu, J.S., Huang, H., Ding, W.P., Feng, D., Large Magnetic Entropy Change in Perovskite-Type Manganese Oxides, Physical Review Letters 78 (6), 1142-1145 (1997).
Ayaş, A., Akyol, M., Ekicibil, A., Structural and magnetic properties with large reversible magnetocaloric effect in (La1-xPrx )0.85Ag0.15MnO3 (0.0 ≤ x ≤ 0.5) compounds, Philosophical Magazine 96, 1-16 (2016).
Ulyanov, A., Kim, J., Shin, G., Kang, Y., Yoo, S., Giant magnetic entropy change in La0.7Ca0.3MnO3 in low magnetic field, Journal of Physics D: Applied Physics 40, 123 (2006).
Tian, S.-B., Phan, M.-H., Yu, S.-C., Hur, N.H., Magnetocaloric effect in a La0.7Ca0.3MnO3 single crystal, Physica B: Condensed Matter 327 (2), 221-224 (2003).
Khlifi, M., Dhahri, E., Magnetic, magnetocaloric, magnetotransport and magnetoresistance properties of calcium deficient manganites La0.8Ca0.2-x□xMnO3 post-annealed at 800 °C, Journal of Alloys and Compounds 587, 771 (2014).
Yang, S.a., Chen, Q., Yang, Y., Gao, Y., Xu, R., Zhang, H., Ma, J., Silver addition in polycrystalline La0.7Ca0.3MnO3: Large magnetoresistance and anisotropic magnetoresistance for manganite sensors, Journal of Alloys and Compounds 882, 160719 (2021).
Kalyana Lakshmi, Y., Venkataiah, G., Vithal, M., Venugopal Reddy, P., Magnetic and electrical behavior of La1−xAxMnO3 (A=Li, Na, K and Rb) manganites, Physica B: Condensed Matter 403 (18), 3059-3066 (2008).
Hsini, M., Ghivelder, L., Parisi, F., Critical behavior investigated through magnetocaloric effect in PrSrMnO and Pr(Sr,Ca)MnO manganites, Journal of Magnetism and Magnetic Materials 535, 168059 (2021).
Pękała, M., Pękała, K., Drozd, V., Fagnard, J.F., Vanderbemden, P., Effect of nanocrystalline structure on magnetocaloric effect in manganite composites (1/3)La0.7Ca0.3MnO3/(2/3)La0.8Sr0.2MnO3, Journal of Alloys and Compounds 629, 98-104 (2015).
Wang, G.F., Zhao, Z.R., Li, H.L., Zhang, X.F., Enhancement of refrigeration capacity and table-like magnetocaloric effect in La0.8Ca0.2MnO3/La0.8K0.2MnO3 nanocrystalline composite, Ceramics International 41 (7), 9035-9040 (2015).
Daughton, J., Brown, J., Chen, E., Beech, R., Pohm, A., Kude, W., Magnetic field sensors using GMR multilayer, Magnetics, IEEE Transactions on 30, 4608-4610 (1994).
Chatterji, T., McIntyre, G.J., Caliebe, W., Suryanarayanan, R., Dhalenne, G., Revcolevschi, A., Reentrant behavior of the charge and orbital ordering and antiferromagnetism in LaSr2Mn2O7, Physical Review B 61 (1), 570-574 (2000).
Allieta, M., Scavini, M., Lo Presti, L., Coduri, M., Loconte, L., Cappelli, S., Oliva, C., Ghigna, P., Pattison, P., Scagnoli, V., Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior, Physical Review B 88, 214104 (2013).
Diez, J.-C., Rasekh, S., Madre, M.A., Torres, M.A., Sotelo, A.E., High thermoelectric performances of Bi–AE–Co–O compounds directionally growth from the melt, Boletín de la Sociedad Española de Cerámica y Vidrio 57 (1), 1-8 (2018).
Bhide, V.G., Dani, R.H., Electrical conductivity in oxides of manganese and related compounds, Physica 27 (9), 821-826 (1961).
Steirer, K.X., Chesin, J.P., Widjonarko, N.E., Berry, J.J., Miedaner, A., Ginley, D.S., Olson, D.C., Solution deposited NiO thin-films as hole transport layers in organic photovoltaics, Organic Electronics 11 (8), 1414-1418 (2010).
Shannon, R., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst 32, 751-767 (1976).
Ruiz-Díaz, P., Stepanyuk, O., Stepanyuk, V., Effects of exchange interactions on magnetic anisotropy and spin-dynamics of adatoms on metallic surfaces, The Journal of Physical Chemistry C 119 (46), 26237-26241 (2015).
Brovko, O.O., Ignatiev, P.A., Stepanyuk, V.S., Bruno, P., Tailoring Exchange Interactions in Engineered Nanostructures: An Ab Initio Study, Physical Review Letters 101 (3), 036809 (2008).
Coşkun, A., Taşarkuyu, E., Irmak, A.E., Aktürk, S., High magnetic entropy change in La0.70Ca0.21Ag0.09MnO3 compound, Journal of Alloys and Compounds 669, 217-223 (2016).
Toulemonde, O., Studer, F., Raveau, B., Magnetic interactions studies of Co and Ni-doped manganites using soft XMCD, Solid State Communications 118 (2), 107-112 (2001).
Blasse, G., Ferromagnetic interactions in non-metallic perovskites, Journal of Physics and Chemistry of Solids 26 (12), 1969-1971 (1965).
Jemai, D., Mnefgui, S., Ben Hassine, A., Tahri, T., Oumezzine, M., Behavior of the magnetocaloric effect in La0.7Ba0.2Ca0.1Mn1-xSnxO 3 manganite oxides as promising candidates for magnetic refrigeration, Physica B: Condensed Matter 537, 93-97 (2018).
Samancıoğlu, Y., Coşkun, A., Magnetic properties of A- and B-site cation doped La0.65Ca0.35MnO3 manganites, Journal of Alloys and Compounds 507 (2), 380-385 (2010).
Chebaane, M., Bellouz, R., Oumezzine, M., Fouzri, A., Copper-doped lanthanum manganite La0.65Ce0.05Sr0.3Mn1−xCuxO3 influence on structural, magnetic and magnetocaloric effects, RSC Advances 8, 7186-7195 (2018).
Kameli, P., Vaezi, H., Ehsani, M.H., Aslibeiki, B., Salamati, H., Structual, Magnetic, and Transport Properties of LaMn1-xCuxO3 (x= 0-0.125) Ceramics, Advanced Ceramics Progress 7 (1), 1-10 (2021).
Kim, M., Yang, J., Medvedeva, J., Yelon, W., Parris, P., James, W., Electronic structure of La0.7Sr0.3Mn1−xCuxO3 (0.0≤x≤0.30), Journal of Physics: Condensed Matter 20, 255228 (2008).
Kim, M., Yang, J., Cai, Q., Zhou, X., James, W., Yelon, W., Parris, P., Buddhikot, D., Malik, S., The effect of Cu-doping on the magnetic and transport properties of La0.7Sr0.3MnO3, Journal of Applied Physics 97, 10H714 (2005).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of NanoScience in Advanced Materials

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2025-11-27
Published 2025-12-30