Effect of Polyvinylpyrrolidone (PVP) on the Structural and Morphological Properties of ZnO Nanoparticles


Abstract views: 9 / PDF downloads: 5

Authors

DOI:

https://doi.org/10.5281/zenodo.18064220

Keywords:

ZnO NPs, polyvinylpyrrolidone (PVP), structural properties, morphological properties

Abstract

In this study, zinc oxide (ZnO) nanoparticles were synthesized using polyvinylpyrrolidone (PVP) as a capping and stabilizing agent. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) were used to investigate the structural and morphological properties. The XRD results confirmed the formation of the typical hexagonal wurtzite structure in all samples, with average crystallite sizes of 23, 24, and 27 nm for the as-prepared ZnO, PVP-ZnO-cal, and ZnO-cal, respectively. These results indicate that the PVP-assisted sample effectively limits crystal growth. SEM images revealed that the as-prepared ZnO NPs are irregular and agglomerated, while the calcinated samples display more defined morphologies with average particle sizes of 37, 50, and 65 nm for the as-prepared ZnO, PVP-ZnO-cal, and ZnO-cal, respectively. Both XRD and SEM show the same trend where PVP-ZnO-cal has smaller sizes than ZnO-cal, confirming PVP’s role in limiting growth and agglomeration. EDS confirmed the purity of Zn and O elements in all samples. These findings demonstrate the important role of PVP in controlling and modifying the growth of ZnO nanoparticles.

Author Biography

Abd Elouahb Noua, Research Center in Semiconductor Technology for Energetics (CRTSE)

Research Center in Semiconductor Technology for Energetics (CRTSE). 02, Bd. Frantz Fanon, B.P. 140 Alger - 7 Merveilles 16038, Algiers.

References

Rather, M.A., Deori, P.J., Gupta, K., Daimary, N., Deka, D., Qureshi, A., Dutta, T.K., Joardar, S.N., Mandal, M.J.C., Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Chemosphere 300, 134497 (2022).

Suhaimi, N.A.A., Kong, C.P.Y., Shahri, N.N.M., Nur, M., Hobley, J., Usman, A.J.C., Dynamics of diffusion-and immobilization-limited photocatalytic degradation of dyes by metal oxide nanoparticles in binary or ternary solutions. Catalysts 12 (10) 1254 (2022).

Belew, A.A., Assege, M.A., Solvothermal synthesis of metal oxide nanoparticles: A review of applications, challenges, and future perspectives. Results in Chemistry 16 102438 (2025).

Hamed, R., Obeid, R.Z., Abu-Huwaij, R.J.N.R., Plant mediated-green synthesis of zinc oxide nanoparticles: An insight into biomedical applications. Nanotechnology Reviews 12 (1) 20230112 (2023).

Senthil Rathi, B., Ewe, L.S., S, S., S, S., Yew, W.K., R, B., Tiong, S.K.J.N., Recent trends and advancement in metal oxide nanoparticles for the degradation of dyes: synthesis, mechanism, types and its application. Nanotoxicology 18 (3) 272-298 (2024).

Mohammed, Y.H.I., Alghamdi, S., Jabbar, B., Marghani, D., Beigh, S., Abouzied, A.S., Khalifa, N.E., Khojali, W.M., Huwaimel, B., Alkhalifah, D.H.M.J.A.o., Green synthesis of zinc oxide nanoparticles using Cymbopogon citratus extract and its antibacterial activity. ACS Omega 8 (35) 32027-32042 (2023).

Zainal Abidin, N.A., Arith, F., Noorasid, N.S., Sarkawi, H., Mustafa, A.N., Safie, N.E., Shah, A.S.M., Azam, M.A., Chelvanathan, P., Amin, N., Dopant engineering for ZnO electron transport layer towards efficient perovskite solar cells. RSC Advances 13 (48) 33797-33819 (2023).

Zango, Z.U., Garba, A., Shittu, F.B., Imam, S.S., Haruna, A., Zango, M.U., Wadi, I.A., Bello, U., Adamu, H., Keshta, B.E., Bokov, D.O., Baigenzhenov, O., Hosseini-Bandegharaei, A., A state-of-the-art review on green synthesis and modifications of ZnO nanoparticles for organic pollutants decomposition and CO2 conversion. Journal of Hazardous Materials Advances 17 100588 (2025).

Saeed, M., Marwani, H.M., Shahzad, U., Asiri, A.M., Rahman, M.M.J.T.C.R., Recent advances, challenges, and future perspectives of ZnO nanostructure materials towards energy applications. The Chemical Record 24 (1) e202300106 (2024).

Nunes, D., Pimentel, A., Gonçalves, A., Pereira, S., Branquinho, R., Barquinha, P., Fortunato, E., Martins, R.J.S.S., Technology, Metal oxide nanostructures for sensor applications. Semiconductor Science and Technology 34 (4) 043001 (2019).

Vyas, S.J.J.m.t.r., A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors. Johnson Matthey Technology Review 64 (2) 202-218 (2020).

Shreya, A., Naik, H.B., Vishnu, G., Viswanath, R., Shivaraj, B., Shashank, M., Hareeshanaik, S.J.J.o.I., Polymers, O., Materials, Bifunctional applications of facile Mg-doped ZnO nanoparticles fabricated via co-precipitation technique. Journal of Inorganic and Organometallic Polymers and Materials 34 (9) 4157-4173 (2024).

Kumar, A., Ahmad, M.I.J.J.o.M.S., Role of defects in the electronic properties of Al doped ZnO films deposited by spray pyrolysis. Journal of Materials Science 57 (16) 7877-7895 (2022).

Gómez Torres, F.d.C., Luis Cervantes López, J., López Rodríguez, A.S., Sifuentes Gallardo, P., Ramírez Morales, E., Pérez Hernández, G., Díaz Guillen, J.C., Díaz Flores, L.L., Sol–gel/hydrothermal synthesis of well-aligned ZnO nanorods. Boletín de la Sociedad Española de Cerámica y Vidrio 62 (4) 348-356 (2023).

Basnet, P., Chatterjee, S., Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures & Nano-Objects 22 100426 (2020).

Kamardin, I.L.K., Ngah, M., Ahmad Fuad, A.F., Harun, M.H., Ainun Rahmahwati, A., Growth of nanostructured ZnO nanosheet on ITO/PET substrate prepared via sol gel spin coating and hot water treatment, Materials Science Forum, Trans Tech Publ, 252-256 (2016).

Waghadkar, Y.B., Umarji, G., Kekade, S.S., Rane, S., chauhan, R., Ashokkumar, M., Gosavi, S.W., Synthesis and characterization of indium-doped ZnO nanoparticles by coprecipitation method for highly photo-responsive UV light sensors. Sensors International 5 100271 (2024).

Noua, A.E., Kaya, D., Sigircik, G., Tuken, T., Karadag, F., Ekicibil, A.J.J.o.M.S.M.i.E., Enhanced photocatalytic activity in AgCu-decorated ZnO nanoparticles under UV and sunlight. Journal of Materials Science: Materials in Electronics 35 (18) 1220 (2024).

Fiévet, F., Ammar-Merah, S., Brayner, R., Chau, F., Giraud, M., Mammeri, F., Peron, J., Piquemal, J.-Y., Sicard, L., Viau, G.J.C.S.R., The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chemical Society Reviews 47 (14) 5187-5233 (2018).

Shan, G., Hao, H., Wang, X., Shang, Z., Chen, Y., Liu, Y., The effect of PVP on the formation and optical properties ZnO/Ag nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects 405 1-5 (2012).

Alves, R.F., Raimundo, R.A., Lima, B.A.S.G., Loureiro, F.J.A., Fagg, D.P., Macedo, D.A., Gomes, U.U., Morales, M.A., The effect of particle size on structural and catalysts for oxygen evolution reaction of (CoFeNiMnCr)3O4 prepared by controlled synthesis with polyvinylpyrrolidone (PVP).Journal of Colloid and Interface Science 680 818-831 (2025).

Holzwarth, U., Gibson, N., The Scherrer equation versus the 'Debye-Scherrer equation'. Nature Nanotechnology 6 (9) 534-534 (2011).

Koczkur, K.M., Mourdikoudis, S., Polavarapu, L., Skrabalak, S.E.J.D.t., Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton transactions 44 (41) 17883-17905 (2015).

Wei, S., Lian, J., Jiang, Q.J.A.S.S., Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science 255 (15) 6978-6984 (2009).

Downloads

Published

2025-12-30

How to Cite

Noua, A. E. (2025). Effect of Polyvinylpyrrolidone (PVP) on the Structural and Morphological Properties of ZnO Nanoparticles. Journal of NanoScience in Advanced Materials, 4(2), 94–98. https://doi.org/10.5281/zenodo.18064220

Issue

Section

Research Article
Received 2025-10-23
Accepted 2025-12-11
Published 2025-12-30