Magnetocaloric Effect Simulation in La0.8Na0.2MnO3-Δ Nanopowders


Abstract views: 171 / PDF downloads: 103

Authors

DOI:

https://doi.org/10.5281/zenodo.8002201

Keywords:

Critical behavior, Landau model, Magnetizations, Modified Arrott plot, Spontaneous magnetization

Abstract

The critical behavior of La0.8Na0.2MnO3-Δ nanopowders at the paramagnetic to ferromagnetic phase transition is studied. The optimized critical exponents, through an iterative program based on Kouvel–Fisher method, were found to be as: ; . These obtained critical exponents does not match with the conventional universality classes. In addition, these  and  values are close the ones predicted by the mean-filed theory (  and ). It has been approved that the estimated critical temperature and the critical exponents are unambiguous and intrinsic to the La0.8Na0.2MnO3-Δ nanopowders. Based on the combination of the Landau model and the Arrott–Noakes equation, the isothermal magnetization curves and the magnetocaloric effect have been successfully simulated.

References

Al-Yahmadi, I.Z., Gismelseed, A.M., Al Ma'Mari, F., Al-Rawas, A.D., Al-Harthi, S.H., Yousif, A.Y., Widatallah, H.M., Elzain, M.E., Myint, M.T.Z., Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A=Co, Ni, Zn) perovskite manganites, Journal of Alloys and Compounds 875 159977 (2021).

Xie, K., Wang, J., Xu, S., Hao, W., Zhao, L., Huang, L., Wei, Z.J.M., Design, Application of Two-Dimensional MXene materials in sensors, 228 111867 (2023).

Zhang, Y., Zhu, J., Li, S., Zhang, Z., Wang, J., Ren, Z.J.S.C.M., Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound, 65 (5) 1345-1352 (2022).

Guo, D., Moreno-Ramírez, L.M., Law, J.-Y., Zhang, Y., Franco, V.J.S.C.M., Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE= Dy, Ho, or Er) compounds, 66 (1) 249-256 (2023).

Xia, W., Pei, Z., Leng, K., Zhu, X.J.N.R.L., Research progress in rare earth-doped perovskite manganite oxide nanostructures, 15 (1) 1-55 (2020).

Lyubina, J.J.J.o.P.D.A.P., Magnetocaloric materials for energy efficient cooling, 50 (5) 053002 (2017).

Silva, D.J., Ventura, J., Araújo, J.P.J.I.J.o.E.R., Caloric devices: A review on numerical modeling and optimization strategies, 45 (13) 18498-18539 (2021).

Li, Y., Feng, S., Lv, Q., Kan, X., Liu, X.J.J.o.A., Compounds, An investigation of reentrant spin-glass behavior, magnetocaloric effect and critical behavior of MnCr2O4, 877 160224 (2021).

Ahmed, A., Mazumdar, D., Das, K., Das, I.J.J.o.M., Materials, M., A comparative study of the magnetic and magnetocaloric effect of polycrystalline Gd0. 9Y0. 1MnO3 and Gd0. 7Y0. 3MnO3 compounds: Influence of Y-ions on the magnetic state of GdMnO3, 551 169133 (2022).

Ma, K.J.A.B.I., Modern Theory of Critical Phenomena, Ed, (1976).

Huang, K., Statistical mechanics, John Wiley & Sons (2008).

Hsini, M., Hcini, S., Zemni, S.J.J.o.M., Materials, M., Magnetocaloric effect studying by means of theoretical models in Pr0. 5Sr0. 5MnO3 manganite, 466 368-375 (2018).

Masrour, R., Jabar, A., Khlif, H., Jemaa, F.B., Ellouze, M., Hlil, E.J.S.s.c., Experiment, mean field theory and Monte Carlo simulations of the magnetocaloric effect in La0. 67Ba0. 22Sr0. 11MnO3 compound, 268 64-69 (2017).

Igoshev, P.A., Nekrasov, I.A., Pavlov, N.S., Chinyaev, T.H., Yakupov, E.O., Investigation of magnetocaloric effect: Stoner approximation vs DMFT, Journal of Physics: Conference Series, IOP Publishing, pp. 012083 (2019).

Amaral, J., Amaral, V.J.J.o.m., materials, m., On estimating the

magnetocaloric effect from magnetization measurements, 322 (9-12) 1552-1557 (2010).

Amaral, J., Silva, N., Amaral, V.J.A.P.L., A mean-field scaling method for first-and second-order phase transition ferromagnets and its application in magnetocaloric studies, 91 (17) 172503 (2007).

Vatansever, E., Akinci, Ü., Yüksel, Y.J.P.A.S.M., Applications, i., Non equilibrium magnetocaloric properties of Ising model defined on regular lattices with arbitrary coordination number, 479 563-571 (2017).

Akıncı, Ü., Yüksel, Y., Vatansever, E.J.P.L.A., Magnetocaloric properties of the spin-S (S≥ 1) Ising model on a honeycomb lattice, 382 (45) 3238-3243 (2018).

Buchelnikov, V., Sokolovskiy, V., Taskaev, S., Khovaylo, V., Aliev, A., Khanov, L., Batdalov, A., Entel, P., Miki, H., Takagi, T.J.J.o.P.D.A.P., Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X= Ga, In) Heusler alloys, 44 (6) 064012 (2011).

Liedienov, N., Kalita, V., Pashchenko, A., Dzhezherya, Y.I., Fesych, I., Li, Q., Levchenko, G.J.J.o.A., Compounds, Critical phenomena of magnetization, magnetocaloric effect, and superparamagnetism in nanoparticles of non-stoichiometric manganite, 836 155440 (2020).

Xi, S., Lu, W., Sun, Y.J.J.o.A.P., Magnetic properties and magnetocaloric effect of La0. 8Ca0. 2MnO3 nanoparticles tuned by particle size, 111 (6) 063922 (2012).

Biswas, A., Das, I.J.J.o.A.P., Magnetic and transport properties of nanocrystalline Nd 0.5 Sr 0.5 MnO 3, 102 (6) 064303 (2007).

Mathew, S., Kaul, S.J.a.p.l., Tuning magnetocaloric effect with nanocrystallite size, 98 (17) 172505 (2011).

Rao, S., Bhat, S.J.J.o.P.C.M., Probing the existing magnetic phases in Pr0. 5Ca0. 5MnO3 (PCMO) nanowires and nanoparticles: magnetization and magneto-transport investigations, 22 (11) 116004 (2010).

Pena, C., Soffner, M., Mansanares, A., Sampaio, J., Gandra, F., da Silva, E., Vargas, H.J.P.B.C.M., Structural and magnetic analysis of La0. 67Ca0. 33MnO3 nanoparticles thermally treated: Acoustic detection of the magnetocaloric effect, 523 39-44 (2017).

Liedienov, N.A., Wei, Z., Kalita, V.M., Pashchenko, A.V., Li, Q., Fesych, I.V., Turchenko, V.A., Hou, C., Wei, X., Liu, B.J.A.M.T., Spin-dependent magnetism and superparamagnetic contribution to the magnetocaloric effect of non-stoichiometric manganite nanoparticles, 26 101340 (2022).

Kouvel, J.S., Fisher, M.E.J.P.R., Detailed magnetic behavior of nickel near its Curie point, 136 (6A) A1626 (1964).

Pramanik, A., Banerjee, A.J.P.R.B., Critical behavior at paramagnetic to ferromagnetic phase transition in Pr 0.5 Sr 0.5 MnO 3: A bulk magnetization study, 79 (21) 214426 (2009).

Arrott, A., Noakes, J.E.J.P.R.L., Approximate equation of state for nickel near its critical temperature, 19 (14) 786 (1967).

Fisher, M.E.J.R.o.p.i.p., The theory of equilibrium critical phenomena, 30 (2) 615 (1967).

Zhang, L., Fan, J., Zhang, Y.J.M.P.L.B., Magnetic entropy calculation for a second-order ferromagnetic phase transition, 28 (08) 1450059 (2014).

Cabassi, R., Bolzoni, F., Gauzzi, A., Licci, F.J.P.R.B., Critical exponents and amplitudes of the ferromagnetic transition in La 0.1 Ba 0.9 V S 3, 74 (18) 184425 (2006).

Lévy, L.-P., Magnetism and superconductivity, Springer Science & Business Media (2000).

Dong, Q.-y., Zhang, H.-w., Shen, J.-l., Sun, J.-r., Shen, B.-g.J.J.o.m., materials, m., Field dependence of the magnetic entropy change in typical materials with a second-order phase transition, 319 (1-2) 56-59 (2007).

Amaral, V., Amaral, J.J.J.o.m., materials, m., Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials, 272 2104-2105 (2004).

Downloads

Published

2023-06-25

How to Cite

Khedmi, N., Zaidi, N., & Hsini, M. (2023). Magnetocaloric Effect Simulation in La0.8Na0.2MnO3-Δ Nanopowders. Journal of NanoScience in Advanced Materials, 2(1), 25–30. https://doi.org/10.5281/zenodo.8002201

Issue

Section

Regular Article
Received 2023-04-09
Accepted 2023-06-03
Published 2023-06-25