Structural, Magnetic, Electrical and Dielectric Characterizations of Co0.5Ni0.5FeCuO4 Ferrite
Abstract views: 80 / PDF downloads: 41
DOI:
https://doi.org/10.5281/zenodo.12540643Keywords:
Spinel ferrite, Activation energy, Modulus, Nyquist representation, relaxation phenomenonAbstract
The Co0.5Ni0.5FeCuO4 compound was elaborated using sol-gel reaction route. X-ray diffraction patterns indicated that the sample crystallize in the cubic spinel structure (Fd-3m space group). Magnetic measurements revealed that the prepared sample showed a paramagnetic-ferromagnetic transition at TC= 785K. Then, dielectric data has been carried out by means of impedance spectroscopy in a wide frequency and temperature ranges. For the sample, the activation energy Ea estimated from the slope of the linear fit plot is equal to 0.42 eV at temperature range 200-420 K. The electrical modulus and impedance studies reveal the presence of a relaxation phenomenon with non-Debye type in the prepared sample. Nyquist representation (Z″ vs. Zʹ) was plotted and their characteristic behavior was analyzed in terms of electrical equivalent circuit.
References
Lázár, K., Mathew, T., Koppány, Z., Megyeri, J., Samuel, V., Mirajkar, S.P., Rao, B.S., Guczi, L., Cu1-xCoxFe2O4 ferrospinels in alkylation: structural changes upon reaction, Physical Chemistry Chemical Physics 4 3530–3536 (2002).
Batoo, K.B., Ansari, M.S., Low temperature-fired Ni-Cu-Zn ferrite nanoparticles through auto-combustion method for multilayer chip inductor applications, Nanoscale Research Letter 7 112 (2012).
Rahman, M.T., Vargas, M., Ramana, C.V., Structural characteristics, electrical conduction and dielectric properties of gadolinium substituted cobalt ferrite, Journal of Alloys Compounds 617 547-562 (2014).
Meng, Y.Y., Liu, Z.W., Dai, H.C., Yu, H.Y., Zeng, D.C., Shukla, S., Ramanujan, R.V., Structure and magnetic properties of Mn(Zn)Fe2−xRExO4 ferrite nano-powders synthesized by co-precipitation and refluxing method, Powder Technology 229 270-275 (2012).
Raghasudha, M., Ravinder, D., Veerasomaiah, P., Thermoelectric power studies of Co–Cr nano ferrites, Journal of Alloys Compounds 604 276–280 (2014).
Dar, M.A., Varshney, D., Effect of d-block element Co2+ substitution on structural, Mössbauer and dielectric properties of spinel copper ferrites, Journal of Magnetism and Magnetic Materials 436 101-112 (2017).
Nikumbh, A.K., Pawar, R.A., Nighot, D.V., Gugale, G.S., Sangale, M.D., Khanvilkar, M.B., Nagawade, A.V., Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method, Journal of Magnetism and Magnetic Materials 355 201–209 (2014).
Sun, G.L., Li, J.B., Sun, J.J., Yang, X.Z., The influences of Zn2+ and some rare-earth ions on the magnetic properties of nickel-zinc ferrites, Journal of Magnetism and Magnetic Materials 281 2–3 (2004).
Rezlescu, N., Rezlescu, E., Pasnicu, C., Craus, M.L., Effects of the rare-earth ions on some properties of a nickel-zinc ferrite, Journal of Physics: Condensed Matter 6 5707–5716 (1994).
Sena, R., Jain, P., Patidara, R., Srivastavab, S., Ranac, R.S., Guptaa,N., Materials Today: Proceedings 750 757 (2015).
Dinkar, D.K., Das, B., Gopalan, R., Dehiya, B.S., Effects of surfactant on the structural and magnetic properties of hydrothermally synthesized NiFe2O4 nanoparticles, Materials Chemistry and Physics 70 76 (2018).
Adeleke, J.T., Theivasanthi, T., Thiruppathi, M., Swaminathan, M., Akomolafe, T., Alabi, A.B., Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles, Applied Surface Science 415 195-200 (2018).
Pottkera, W.E., Onoa, R., Cobosb, M.A., Hernandob, A., Araujod, J.F.D.F., Antonio C.O. Brunod, Lourençoa, S.A., Longo, E., Portaa, F.A.L., Influence of order-disorder effects on the magnetic and optical properties of NiFe2O4 nanoparticles, Ceramics International 44 14 17290-17297 (2018).
Hcini, S., Omri, A., Boudard, M.,.Bouazizi, M.L., Dhahri, A., Touileb, K. Journal of Materials Science: Materials in Electronics 464 91 (2018).
Batoo, K.M., El-sadek, M.S.A., Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method, Journal of Alloys and Compounds 566 112-119 (2013).
Hankare, P.P., Sankpal, U.B., Patil, R.P., Jadhav, A.V., Garadkar, K.M., Chougule, B.K., Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites, Journal of Magnetism and Magnetic Materials 323 389-393 (2011).
Ortega, N., Kumar, A., Bhattacharya, P.,. Majumder, S.B, Katiyar, R.S., Impedance spectroscopy of multiferroic PbZrxTi1−xO3/CoFe2O4 layered thin films, Phys. Rev. B. 77, 014111 (2008).
Atiq, S., Majeed, M., Ahmad, A., Abbas, S.K., Saleem, M., Riaz, S., Naseem, S., Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method, Journal of Magnetism and Magnetic Materials 43, 2486 48 (2017).
MacDonald, J.R., Impedance Spectroscopy e Emphasizing Solid Materials and Systems, Wiley, NewYork, 1987.
Jonscher, A.K., Dielectric Relaxation in Solids, Chelsea Dielectrics, London, 1983.
Kumar, A., Singh, B.P., Choudhary, R.N.P., Thakur, A.K., A.C. Impedance analysis of the effect of dopant concentration on electrical properties of calcium modified BaSnO3, Journal of Alloys Compounds 394 292-302 (2005).
Pradhan, D.K., Samantaray, B.K., Choudhary, R.N.P., Thakur, A.K., Complex impedance studies on a layered perovskite ceramic oxide—NaNdTiO4, Materials Science and Engineering: B 116 7–13 (2005).
Macedo, P.B., Moynihan, C.T., Bose, R., The Role of Ionic Diffusion in Polarization in Vitreous Ionic Conductors, Physics and Chemistry Glasses, 13. 171-17913 (1972).
Provenzano, V., Boesch, L.P., Volterra, V., Moynihan, C.T., Macedo, P.B., Electrical Relaxation in Na2O·3SiO2 Glass, American Ceramic Society, 55 492-496 (1972).
Jain, H., Hsieh, C.H., Window’ effect in the analysis of frequency dependence of ionic conductivity, Journal of Non-Crystalline Solids, 172 1408 (1994).
Hcini, S., Oumezzine, E., Baazaoui, M., Electrical conductance and complex impedance analysis of La0.6Pr0.1Ba0.3Mn1-xNixO3 nanocrystalline manganites, Applied Physics A.120 1453–1459 (2015).
Khadhraoui, S., Triki, A., Hcini, S., Variable-range-hopping conduction and dielectric relaxation in Pr0.6Sr0.4Mn0.6Ti0.4O3 perovskite. Journal of Magnetism and Magnetic Materials 371 69–76 (2014).
Hench, L.L., West, J.K., Principles of Electronic Ceramics John Wiley and Sons, New York, 205 (1990).
Charles, B., Ganam, F.D., Dielectric studies on sodium fluoroantimonate single crystals, Crystal Research and Technology 29 707-712 (1994).
Bhat, M.H., Kandavel, M., Ganguli, M., Rao, K.J., Li+ ion conductivities in boro-tellurite glasses, Bulletin of Materials Science 27 189-191 (2004).
Farid, A.M., Bekheet., A.E., AC conductivity and dielectric properties of Sb2S3 films, Vacuum 59 932 (2000).
El-Nahass, M.M., Ali, H.A.M., AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile, Solid State Communications 152 12 1084-1088 (2012).
Shukla, A., Choudhary, R.N.P., Thakur, A.K., Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramic, Journal of Physics Chemistry Solids 70 1401–1407 (2009).
Johnson, D., ZView: a Software Program for IES Analysis, Version 2.8, Scribner Associates, Inc. Southern Pines, NC (2018).
Hcini, S., Oumezzine, E., Baazaoui, M., Rahmouni, H., Khirouni, K., Hlil, E.K., Oumezzine, M., Electrical conductance and complex impedance analysis of La0.6Pr0.1Ba0.3Mn1−xNixO3 nanocrystalline manganites, Applied Physics A 120 1453 (2015).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of NanoScience in Advanced Materials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-06-01
Published 2024-06-30