The Effect of Cr-doped on Structural, Magnetic and Magnetocaloric Properties of La0.8Sr0.15Na0.05Mn(1-x)CrxO3 (x=0.00, 0.15 and x=0.20) Compounds
Abstract views: 149 / PDF downloads: 62
DOI:
https://doi.org/10.5281/zenodo.12526368Keywords:
Manganite oxides, Magnetocaloric, Magnetization, Magnetic entropy changeAbstract
The physics properties of manganite oxides La0.8Sr0.15Na0.05Mn (1-x)CrxO3 synthesized by solid-solid method were studied in details. X-ray diffraction analyses showed a single rhombohedral phase with R3-c space group. The inhomogeneous magnetic comportment coupled was used to explain the magnetic properties and the evolution of the paramagnetic-ferromagnetic transition of the materials. The maximum values of magnetic entropy change (ΔSMax) decreased from 5.77 Jkg-1K for La0.8Sr0.15Na0.05MnO3 to La0.8Sr0.15Na0.05Mn0.8Cr0.2O3 5.12 Jkg-1K for upon an applied magnetic field of µ0H=5 T, indicating an excellent quality of our samples as compared to many manganite oxides. The high quality of our samples was also checked by the large relative cooling power (RCP) which provides a good performance for industrial technologies in refrigeration device.
References
Ncib, W., Ben Jazia Kharrat, A., Wederni, M.A., Chniba-Boudjada, N., Khirouni, K., and Boujelben, W. "Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67-xEuxBa0.33Mn0.85Fe0.15O3 (x=0.0, 0.1) manganites", Journal of Alloys and Compounds 768 249-262 (2018).
Khedmi, N., Zaidi, N., and Hsini, M. "Magnetocaloric Effect Simulation in La0.8Na0.2MnO3-Δ Nanopowders", Journal of NanoScience in Advanced Materials 2 (1) 25-30 (2023).
Al-Yahmadi, I.Z., Gismelseed, A.M., Al Ma'Mari, F., Al-Rawas, A.D., Al-Harthi, S.H., Yousif, A.Y., Widatallah, H.M., Elzain, M.E., and Myint, M.T.Z. "Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A=Co, Ni, Zn) perovskite manganites", Journal of Alloys and Compounds 875 159977 (2021).
Hsini, M., khadhraoui, S., Zaidi, N., and Alrowaili, Z.A. "Modeling the Magnetocaloric Effect of La0.67Pb0.33MnO3 by the Mean-Field Theory", Journal of Superconductivity and Novel Magnetism 31 (11) 3717-3722 (2018).
Lyubina, J. "Magnetocaloric materials for energy efficient cooling", Journal of Physics D: Applied Physics 50 (5) 053002 (2017).
Zaidi, N. and Cherif, A. "Critical behavior and magnetocaloric effect simulation in TbFeSi and DyFeSi intermetallic compounds using a Landau universal", AIP Advances 13 (4) (2023).
Sun, L., Zhang, R., Ni, Q., Cao, E., Hao, W., Zhang, Y., and Ju, L. "Magnetic and dielectric properties of MgxCo1-xFe2O4 ferrites prepared by the sol-gel method", Physica B: Condensed Matter 545 4-11 (2018).
Ju, J., Lin, J., Wang, Y., Zhang, Y., and Xia, C. "Electrical performance of nanostructured strontium-doped lanthanum manganite impregnated onto yttria-stabilized zirconia backbone", Journal of Power Sources 302 298-307 (2016).
Reshmi, C.P., Savitha Pillai, S., Suresh, K.G., and Varma, M.R. "Room temperature magnetocaloric properties of Ni substituted La0.67Sr0.33MnO3", Solid State Sciences 19 130-135 (2013).
Wang, Z.H., Geng, D.Y., Gong, W.J., Li, J., Li, Y.B., and Zhang, Z.D. "Effect of adding Cr on magnetic properties and metallic behavior in MnTe film", Thin Solid Films 522 175-179 (2012).
Tozri, A., Alhalafi, S., Alrowaili, Z.A., Horchani, M., Omri, A., Skini, R., Ghorai, S., Benali, A., Costa, B.F.O., and Ildiz, G.O. "Investigation of the magnetocaloric effect and the critical behavior of the interacting superparamagnetic nanoparticles of La0.8Sr0.15Na0.05MnO3", Journal of Alloys and Compounds 890 161739 (2022).
Mnefgui, S., Zaidi, N., Dhahri, A., Hlil, E.K., and Dhahri, J. "Behavior of the magnetocaloric effect and critical exponents in La0.67Sr0.33Mn1−xVxO3 manganite oxide", Journal of Solid State Chemistry 215 193-200 (2014).
Moghadam, R.Z., Dizagi, H.R., Agren, H., and Ehsani, M.H. "Understanding the effect of Mn2+ on Yb3+/Er3+ co-dopedNaYF4 upconversion and obtaining the optimal combination of these tridoping", Scientific Reports 13 (1) 17556 (2023).
Zarei Moghadam, R., Ehsani, M.H., Rezagholipour Dizaji, H., Kameli, P., and Jannesari, M. "Oxygen doping effect on wettability of diamond-like carbon films", Materials Research Express 8 (3) 035601 (2021).
Zhang, K.S., Xue, J.N., Wang, Y.X., Sun, H., and Long, Y. "Magnetocaloric effect and corrosion resistance of La(Fe, Si)13 composite plates bonded by different fraction of phenolic resin", AIP Advances 8 (4) (2017).
Cong, D.Y., Huang, L., Hardy, V., Bourgault, D., Sun, X.M., Nie, Z.H., Wang, M.G., Ren, Y., Entel, P., and Wang, Y.D. "Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy", Acta Materialia 146 142-151 (2018).
Liu, J., Li, G., and Fathy, H.K. "A Computationally Efficient Approach for Optimizing Lithium-Ion Battery Charging", Journal of Dynamic Systems, Measurement, and Control 138 (2) (2015).
Mohamed, Z., Tka, E., Dhahri, J., and Hlil, E.K. "Giant magnetic entropy change in manganese perovskite La0.67Sr0.16Ca0.17MnO3 near room temperature", Journal of Alloys and Compounds 615 290-297 (2014).
Chen, L., Li, Y., Zhang, Q., and Hao, X. "Electrical properties and energy-storage performance of (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 antiferroelectric thick films prepared by tape-casing method", Ceramics International 42 (11) 12537-12542 (2016).
Rao, K.S., Tilak, B., Varada Rajulu, K.C., Swathi, A., and Workineh, H. "A diffuse phase transition study on Ba2+ substituted (Na0.5Bi0.5)TiO3 ferroelectric ceramic", Journal of Alloys and Compounds 509 (25) 7121-7129 (2011).
Zaidi, N., Mnefgui, S., Dhahri, A., Dhahri, J., and Hlil, E.K. "The effect of Dy doped on structural, magnetic and magnetocaloric properties of La0.67−xDyxPb0.33MnO3 (x=0.00, 0.15 and 0.20) compounds", Physica B: Condensed Matter 450 155-161 (2014).
Belo, J.H., Amaral, J.S., Pereira, A.M., Amaral, V.S., and Araújo, J.P. "On the Curie temperature dependency of the magnetocaloric effect", Applied Physics Letters 100 (24) (2012).
Li, G., Li, Q., Pan, M., Hu, B., Chen, C., Teng, J., Diao, Z., Zhang, J., Jin, R., and Plummer, E.W. "Atomic-Scale Fingerprint of Mn Dopant at the Surface of Sr3(Ru1−xMnx)2O7", Scientific Reports 3 (1) 2882 (2013).
Giri, S.K., Dasgupta, P., Poddar, A., and Nath, T.K. "Tuning of normal and inverse magnetocaloric effect in Sm0.35Pr0.15Sr0.5MnO3 phase separated manganites", Journal of Alloys and Compounds 631 266-271 (2015).
Zaidi, N., Mnefgui, S., Dhahri, A., Dhahri, J., and Hlil, E.k. "Study of electrical transport and magnetoresistive properties of La0.67−x DyxPb0.33 MnO3 (x = 0.00, 0.10 and 0.15)", Journal of Alloys and Compounds 616 378-384 (2014).
Gómez, A., Chavarriaga, E., Supelano, I., Parra, C.A., and Morán, O. "Tuning the magnetocaloric properties of La0.7Ca0.3MnO3 manganites through Ni-doping", Physics Letters A 382 (13) 911-919 (2018).
Jiang, W., Zhou, X., Williams, G., Mukovskii, Y., and Glazyrin, K. "Griffiths phase and critical behavior in single-crystal La0.7Ba0.3MnO3: Phase diagram for La1-xBaxMnO3 (x<0.33)", Physical Review B 77 (6) 064424 (2008).
Jiang, W., Zhou, X., Williams, G., Mukovskii, Y., and Glazyrin, K. "Is a Griffiths Phase a Prerequisite for Colossal Magnetoresistance?", Physical Review Letters 99 (17) 177203 (2007).
Tlili, R., Hammouda, R., Bejar, M., and Dhahri, E. "Theoretical investigation of the magnetocaloric effect on La0.7(Ba, Sr)0.3Mn0.9Ga0.1O3 compound at room temperature", Journal of Magnetism and Magnetic Materials 386 81-84 (2015).
Shen, T.D., Schwarz, R.B., Coulter, J.Y., and Thompson, J.D. "Magnetocaloric effect in bulk amorphous Pd40Ni22.5Fe17.5P20 alloy", Journal of Applied Physics 91 (8) 5240-5245 (2002).
Zener, C. "Interaction between the $d$-Shells in the Transition Metals. II. Ferromagnetic Compounds of Manganese with Perovskite Structure", Physical Review 82 (3) 403-405 (1951).
Ribeiro, P.O., Alho, B.P., Alvarenga, T.S.T., Nóbrega, E.P., de Sousa, V.S.R., Carvalho, A.M.G., Caldas, A., de Oliveira, N.A., and von Ranke, P.J. "Theoretical investigations on magnetocaloric effect in Er1−yTbyAl2 series", Journal of Magnetism and Magnetic Materials 379 112-116 (2015).
Nath Mahato, R., Sethupathi, K., Sankaranarayanan, V., and Nirmala, R. "Co-existence of giant magnetoresistance and large magnetocaloric effect near room temperature in nanocrystalline La0.7Te0.3MnO3", Journal of Magnetism and Magnetic Materials
(17) 2537-2540 (2010).
Dong, Q.-y., Zhang, H.-w., Shen, J.-l., Sun, J.-r., and Shen, B.-g. "Field dependence of the magnetic entropy change in typical materials with a second-order phase transition", Journal of Magnetism and Magnetic Materials 319 (1) 56-59 (2007).
Zaidi, N., Mnefgui, S., Dhahri, J., and Hlil, E.K. "Effect of Ru substitution on the physical properties of La0.6Pr0.1Sr0.3Mn1−xRuxO3 (x = 0.00, 0.05 and 0.15) perovskites", RSC Advances 5 (40) 31901-31909 (2015).
Banerjee, B.K. "On a generalised approach to first and second order magnetic transitions", Physics Letters 12 (1) 16-17 (1964).
Pecharsky, V.K. and Gschneidner, J.K.A. "Giant Magnetocaloric Effect in ${mathrm{Gd}}_{5}({mathrm{Si}}_{2}{mathrm{Ge}}_{2})$", Physical Review Letters 78 (23) 4494-4497 (1997).
Ghodhbane, S., Dhahri, A., Dhahri, N., Hlil, E.K., and Dhahri, J. "Structural, magnetic and magnetocaloric properties of La0.8Ba0.2Mn1−xFexO3 compounds with 0⩽x⩽0.1", Journal of Alloys and Compounds 550 358-364 (2013).
Hu Feng-Xia , Q.X.-L., Wang Guang-Jun , Sun Ji-Rong , Shen Bao-Gen , Cheng Zhao-Hua , Gao Ju. "Magnetoresistances and magnetic entropy changes associated with negative lattice expansions in NaZn13-type compounds LaFeCoSi", Chin. Phys. B 14 (11) 2329-2334 (2005).
Franco, V., Conde, C.F., Blázquez, J.S., Conde, A., Švec, P., Janičkovič, D., and Kiss, L.F. "A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe∕B ratios", Journal of Applied Physics 101 (9) (2007).
Nisha, P., Savitha Pillai, S., Varma, M.R., and Suresh, K.G. "Critical behavior and magnetocaloric effect in La0.67Ca0.33Mn1−xCrxO3 (x = 0.1, 0.25)", Solid State Sciences 14 (1) 40-47 (2012).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of NanoScience in Advanced Materials
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-02-02
Published 2024-06-30