Modelling the Magnetocaloric Effect Arising from Critical Behavior of Tb2Rh3Ge Rare-Earth


Abstract views: 179 / PDF downloads: 50

Authors

DOI:

https://doi.org/10.5281/zenodo.10403119

Keywords:

Magnetizations, Critical behavior, Landau model, Spontaneous magnetization, Modified Arrot plot

Abstract

In this paper, we investigated the critical behavior during the transition from the ferromagnetic to paramagnetic phase in Tb2Rh3Ge rare-earth. Utilizing the Landau theory, we produced isothermal magnetization curves, M(H,T), in the vicinity of the ferromagnetic-to-paramagnetic phase transition. Through an iterative program utilizing the Kouvel-Fisher method, we determined the optimized critical exponents to be: γ=1.003; β=0.348. These critical exponents are clear and reasonably consistent, although they do not align with the conventional universality classes. We have successfully simulated the magnetic entropy change curves by combining the Arrott-Noakes equation with the Landau model.

References

Abdel-Latif, I.A., Hassen, A., Zybill, C., Abdel-Hafiez, M., Allam, S., and El-Sherbini, T. "The influence of tilt angle on the CMR in Sm0.6Sr0.4MnO3", Journal of Alloys and Compounds 452 (2) 245-248 (2008).

Bally, M.A.A. and Khan, F.A. "Structural, dielectric and magnetic properties of La0.55Sr0.45MnO3 polycrystalline perovskite", Journal of Magnetism and Magnetic Materials 509 166897 (2020).

Xia, W., Pei, Z., Leng, K., and Zhu, X. "Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures", Nanoscale Research Letters 15 (1) 9 (2020).

EGILMEZ, M., CHOW, K.H., and JUNG, J.A. "ANISOTROPIC MAGNETORESISTANCE IN PEROVSKITE MANGANITES", Modern Physics Letters B 25 (10) 697-722 (2011).

Al-Yahmadi, I.Z., Gismelseed, A.M., Al Ma'Mari, F., Al-Rawas, A.D., Al-Harthi, S.H., Yousif, A.Y., Widatallah, H.M., Elzain, M.E., and Myint, M.T.Z. "Structural, magnetic and magnetocaloric effect studies of Nd0.6Sr0.4AxMn1-xO3 (A=Co, Ni, Zn) perovskite manganites", Journal of Alloys and Compounds 875 159977 (2021).

Lyubina, J. "Magnetocaloric materials for energy efficient cooling", Journal of Physics D: Applied Physics 50 (5) 053002 (2017).

Zimm, C., Jastrab, A., Sternberg, A., Pecharsky, V., Gschneidner, K., Osborne, M., and Anderson, I., Description and Performance of a Near-Room Temperature Magnetic Refrigerator, in Advances in Cryogenic Engineering, P. Kittel, Editor Springer US: Boston, MA. p. 1759-1766 (1998)

Li, Y., Feng, S., Lv, Q., Kan, X., and Liu, X. "An investigation of reentrant spin-glass behavior, magnetocaloric effect and critical behavior of MnCr2O4", Journal of Alloys and Compounds 877 160224 (2021).

Ahmed, A., Mazumdar, D., Das, K., and Das, I. "A comparative study of the magnetic and magnetocaloric effect of polycrystalline Gd0.9Y0.1MnO3 and Gd0.7Y0.3MnO3 compounds: Influence of Y-ions on the magnetic state of GdMnO3", Journal of Magnetism and Magnetic Materials 551 169133 (2022).

Ma, S.-K., Modern theory of critical phenomena. Reading,(MA). London: Addison-Wesley (1976)

Huang, K., Statistical Mechanics. New York: Wiley (1987)

Sahu, B. and Strydom, A.M. "Magnetic properties and magnetocaloric effect of Tb2Rh3Ge", Journal of Magnetism and Magnetic Materials 541 168444 (2022).

Chen, H., Zhang, Y., Han, J., Du, H., Wang, C., and Yang, Y. "Magnetocaloric effect in R2Fe17 (R=Sm, Gd, Tb, Dy, Er)", Journal of Magnetism and Magnetic Materials 320 (7) 1382-1384 (2008).

Li, L., Xu, P., Ye, S., Li, Y., Liu, G., Huo, D., and Yan, M. "Magnetic properties and excellent cryogenic magnetocaloric performances in B-site ordered RE2ZnMnO6 (RE = Gd, Dy and Ho) perovskites", Acta Materialia 194 354-365 (2020).

Huang, G.B., Du, Y.S., Wu, X.F., Ma, L., Li, L., Cheng, G., Wang, J., Zhao, J.T., and Rao, G.H. "Tunable magnetocaloric effect at approximately room temperature by Y-substitution in Ho2Fe17", Intermetallics 143 107487 (2022).

Zhang, Y., Wu, B., Guo, D., Wang, J., and Ren, Z. "Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons*", Chinese Physics B 30 (1) 017501 (2021).

Yikun Zhang, Jian Zhu, Shuo Li, Wang, J., and Ren, Z. "Achievement of giant cryogenic refrigerant capacity in quinary rare-earths based high-entropy amorphous alloy", J. Mater. Sci. Technol. 102 66-71 (2022).

Guo, D., Moreno-Ramírez, L.M., Romero-Muñiz, C., Zhang, Y., Law, J.-Y., Franco, V., Wang, J., and Ren, Z. "First- and second-order phase transitions in RE6Co2Ga (RE = Ho, Dy or Gd) cryogenic magnetocaloric materials", Science China Materials 64 (11) 2846-2857 (2021).

Wang, X.-J., Wang, L., Ma, Q., Sun, G., Zhang, Y., and Cui, J.-z. "Magnetic phase transitions and large magnetocaloric effects in equiatomic binary DyZn compound", Journal of Alloys and Compounds 694 613-616 (2017).

Ma, Z., Dong, X., Zhang, Z., and Li, L. "Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds", Journal of Materials Science & Technology 92 138-142 (2021).

Gerasimov, E.G., Inishev, A.A., Mushnikov, N.V., Terentev, P.B., Gaviko, V.S., and Anikin, M.S. "Magnetocaloric effect, heat capacity and exchange interactions in nonstoichiometric Er0.65Gd0.35Co2Mnx compounds", Intermetallics 140 107386 (2022).

Erchidi Elyacoubi, A.S., Masrour, R., and Jabar, A. "Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: Monte Carlo simulations", Solid State Communications 271 39-43 (2018).

van Dijk, N.H. "Landau model evaluation of the magnetic entropy change in magnetocaloric materials", Journal of Magnetism and Magnetic Materials 529 167871 (2021).

Hsini, M., Hcini, S., and Zemni, S. "Magnetocaloric effect studying by means of theoretical models in Pr0.5Sr0.5MnO3 manganite", Journal of Magnetism and Magnetic Materials 466 368-375 (2018).

Hsini, M., Hcini, S., and Zemni, S. "Magnetocaloric effect simulation by Landau theory and mean-field approximation in Pr0.5Sr0.5MnO3", The European Physical Journal Plus 134 (12) 588 (2019).

Pramanik, A.K. and Banerjee, A. "Critical behavior at paramagnetic to ferromagnetic phase transition in ${text{Pr}}_{0.5}{text{Sr}}_{0.5}{text{MnO}}_{3}$: A bulk magnetization study", Physical Review B 79 (21) 214426 (2009).

Arrott, A. and Noakes, J.E. "Approximate Equation of State For Nickel Near its Critical Temperature", Physical Review Letters 19 (14) 786-789 (1967).

Fisher, M.E. "The theory of equilibrium critical phenomena", Reports on Progress in Physics 30 (2) 615 (1967).

Zhang, L., Fan, J., and Zhang, Y. "Magnetic entropy calculation for a second-order ferromagnetic phase transition", Modern Physics Letters B 28 (08) 1450059 (2014).

Amaral, V.S. and Amaral, J.S. "Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials", Journal of Magnetism and Magnetic Materials 272-276 2104-2105 (2004).

Kouvel, J.S. and Fisher, M.E. "Detailed Magnetic Behavior of Nickel Near its Curie Point", Physical Review 136 (6A) A1626-A1632 (1964).

Aharoni, A., Introduction to the Theory of Ferromagnetism Clarendon Press: Oxford (1996)

Eremin, I.M., Knolle, J., and Moessner, R., Magnetism and Superconductivity, in Handbook of Magnetism and Magnetic Materials, M. Coey and S. Parkin, Editors Springer International Publishing: Cham. p. 1-31 (2020)

Dong, Q.-y., Zhang, H.-w., Shen, J.-l., Sun, J.-r., and Shen, B.-g. "Field dependence of the magnetic entropy change in typical materials with a second-order phase transition", Journal of Magnetism and Magnetic Materials 319 (1) 56-59 (2007).

Downloads

Published

2023-12-22

How to Cite

Khadhraoui, S., Zaidi, N., & Hammami, H. (2023). Modelling the Magnetocaloric Effect Arising from Critical Behavior of Tb2Rh3Ge Rare-Earth. Journal of NanoScience in Advanced Materials, 2(2), 57–63. https://doi.org/10.5281/zenodo.10403119

Issue

Section

Regular Article
Received 2023-10-24
Accepted 2023-11-06
Published 2023-12-22